首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

2.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

3.
A series of bis-indolone-N-oxides, 1a–f, was prepared from bis(ethynyl)benzenes and o-halonitroaryls and studied for their in vitro antiplasmodial activities against Plasmodium falciparum and representative strains of bacteria and candida as well as for their cytotoxicity against a human tumor cell line (MCF7). They did not cause any haemolysis (300 μg mL−1). Of the synthesized bis-indolones, compound 1a had the most potent antiplasmodial activity (IC50 = 0.763 μmol L−1 on the FcB1 strain) with a selectivity index (CC50 MCF7/IC50 FcB1) of 35.6. No potency against the tested microbial strains was observed.  相似文献   

4.
Tyrosinase inhibition may be a means to alleviate not only skin hyperpigmentation but also neurodegeneration associated with Parkinson’s disease. In the course of metabolite analysis from tyrosinase inhibitory methanol extract (80% inhibition at 20 μg/ml) of Campylotropis hirtella, we isolated fourteen phenolic compounds, among which neorauflavane 3 emerged as a lead structure for tyrosinase inhibition. Neorauflavane 3 inhibited tyrosinase monophenolase activity with an IC50 of 30 nM. Thus this compound is 400-fold more active than kojic acid. It also inhibited diphenolase (IC50 = 500 nM), significantly. Another potent inhibitor 1 (IC50 = 2.9 μM) was found to be the most abundant metabolite in C. hirtella. In kinetic studies, compounds 3 showed competitive inhibitory behavior against both monophenolase and diphenolase. It manifested simple reversible slow-binding inhibition against monophenolase with the following kinetic parameters: Kiapp = 1.48 nM, k3 = 0.0033 nM−1 min−1 and k4 = 0.0049 min−1. Neorauflavane 3 efficiently reduced melanin content in B16 melanoma cells with 12.95 μM of IC50. To develop a pharmacophore model, we explored the binding mode of neuroflavane 3 in the active site of tyrosinase. Docking results show that resorcinol motif of B-ring and methoxy group in A-ring play crucial roles in the binding the enzyme.  相似文献   

5.
Continuous anaerobic fermentations were performed in a novel external-recycle, biofilm reactor using d-glucose and CO2 as carbon substrates. Succinic acid (SA) yields were found to be an increasing function of glucose consumption with the succinic acid to acetic acid ratio increasing from 2.4 g g−1 at a glucose consumption of 10 g L−1, to 5.7 g g−1 at a glucose consumption of 50 g L−1. The formic acid to acetic acid ratio decreased from an equimolar value (0.77 g g−1) at a glucose consumption of 10 g L−1 to a value close to zero at 50 g L−1. The highest SA yield on glucose and highest SA titre obtained were 0.91 g g−1 and 48.5 g L−1 respectively. Metabolic flux analysis based on the established C3 and C4 metabolic pathways of Actinobacillus succinogenes revealed that the increase in the succinate to acetate ratio could not be attributed to the decrease in formic acid and that an additional source of NADH was present. The fraction of unaccounted NADH increased with glucose consumption, suggesting that additional reducing power is present in the medium or is provided by the activation of an alternative metabolic pathway.  相似文献   

6.
7.
Aminochloroquinoline–kojic acid hybrids were synthesized and evaluated for β-haematin inhibition and antiplasmodial activity against drug resistant (K1) and sensitive (3D7) strains of Plasmodium falciparum. Compound 7j was the most potent compound in both strains (IC503D7 = 0.004 μM; IC50K1 = 0.03 μM) and had the best β-haematin inhibition activity (0.07 IC50 equiv vs 1.91 IC50 equiv for chloroquine). One compound 8c was found to be equipotent in both strains (IC50 = 0.04 μM).  相似文献   

8.
The entomogenous fungus Cordyceps taii, a traditional Chinese medicinal mushroom, exhibits potent important pharmacological effects and it has great potential for health foods and medicine. In this work, the effects of oxygen supply on production of biomass and bioactive helvolic acid were studied in shake-flask fermentation of C. taii mycelia. The value of initial volumetric oxygen transfer coefficient (KLa) within 10.1–33.8 h−1 affected the cell growth, helvolic acid production and expression levels of biosynthetic genes. The highest cell concentration of 17.2 g/L was obtained at 14.3 h−1 of initial KLa. The highest helvolic acid production was 9.6 mg/L at 10.1 h−1 of initial KLa. The expression levels of three genes encoding hydroxymethylglutaryl-CoA synthase, hydroxymethylglutaryl-CoA reductase and squalene synthase were down-regulated on day 2 and day 8 but up-regulated on day 14 at an initial KLa value of 10.1 h−1 vs. 33.8 h−1, which well corresponded to the helvolic acid biosynthesis in those conditions. The information obtained would be helpful for improving the biomass and helvolic acid production in large-scale fermentation of C. taii.  相似文献   

9.
《Process Biochemistry》2010,45(4):573-580
A batch test procedure, based on manometric measurements, was used to study the Anammox process, in particular the inhibition due to nitrite and the effects of hydroxylamine and hydrazine, indicated as possible intermediates of the process. The maximum nitrite removal rate (MNRR) was measured. The method showed good reliability with a standard error of 4.5 ± 3.3% (n: 41). All the tests were carried out on samples taken from a pilot plant with Anammox suspended biomass. The tests were used also to monitor the reactor activity. By testing different spiked additions of nitrite (10–75 mg NO2-N L−1), a short-term inhibition, with more than 25% MNRR decrease, was found at concentrations higher than 60 mg NO2-N L−1. Repeated additions of nitrite higher than 30 mg NO2-N L−1 caused losses of activity. After a complete loss of activity, spiked additions of hydroxylamine (30 mg N L−1 in total) determined a 20% permanent recovery. Low amounts of the intermediates (1–3 mg N L−1) applied on partially inhibited samples and uninhibited samples produced temporary increases in activity up to 50% and 30%, respectively.  相似文献   

10.
In wild-type Escherichia coli, 1 mol of CO2 was fixated in 1 mol of succinic acid generation anaerobically. The key reaction in this sequence, catalyzed by phosphoenolpyruvate carboxylase (PPC), is carboxylation of phosphoenolpyruvate to oxaloacetate. Although inactivation of pyruvate formate-lyase and lactate dehydrogenase is found to enhance the PPC pathway for succinic acid production, it results in excessive pyruvic acid accumulation and limits regeneration of NAD+ from NADH formed in glycolysis. In other organisms, oxaloacetate is synthesized by carboxylation of pyruvic acid by pyruvate carboxylase (PYC) during glucose metabolism, and in E. coli, nicotinic acid phosphoribosyltransferase (NAPRTase) is a rate-limiting enzyme of the NAD(H) synthesis system. To achieve the NADH/NAD+ ratio decrease as well as carbon flux redistribution, co-expression of NAPRTase and PYC in a pflB, ldhA, and ppc deletion strain resulted in a significant increase in cell mass and succinic acid production under anaerobic conditions. After 72 h, 14.5 g L−1 of glucose was consumed to generate 12.08 g L−1 of succinic acid. Furthermore, under optimized condition of CO2 supply, the succinic acid productivity and the CO2 fixation rate reached 223.88 mg L−1 h−1 and 83.48 mg L−1 h−1, respectively.  相似文献   

11.
The antioxidant activities of isoorientin-6″-O-glucoside were studied using various models. Isoorientin-6″-O-glucoside was more potent than Trolox, probucol and butylated hydroxytoluene (BHT) in reducing the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). It also scavenged superoxide anion, peroxyl and hydroxyl radicals that were generated by xanthine/xanthine oxidase, 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) and Fe3+–ascorbate–EDTA–H2O2 system, respectively. The IC50 value, stoichiometry factor and second-order rate constant were 9.0 ± 0.8 μM, 1.8 ± 0.1 and 2.6 × 1010 M−1 s−1 for superoxide generation, peroxyl and hydroxyl radicals. However, isoorientin-6″-O-glucoside did not inhibit xanthine oxidase activity or scavenge hydrogen peroxide (H2O2), carbon radical or 2,2′-azobis(2,4-dimethylvaleronitrile) (AMVN)-derived peroxyl radical in hexane. Isoorientin-6″-O-glucoside inhibited Cu2+-induced oxidation of human low-density lipoprotein (LDL) as measured by fluorescence intensity, thiobarbituric acid-reactive substance formation and electrophoretic mobility. Since isoorientin-6″-O-glucoside did not possess pro-oxidant activity, it may be an effective water-soluble antioxidant that can prevent LDL against oxidation.  相似文献   

12.
5,6,7,8-Tetrahydro-4H-cyclohepta[d]isoxazole derivatives were synthesized and evaluated as a novel class of inhibitors for α-melanocyte-stimulating hormone (α-MSH) induced melanogenesis in a mouse melanoma B16F10 cell line. Compound 8e (IC50 = 0.67 μM), 8h (IC50 = 1.01 μM) and 9b (IC50 = 0.99 μM) exhibited a potent inhibitory activity approximately 85- to 126-fold greater than kojic acid, a well-known potent inhibitor. A biochemical study indicates that the activity of this series should be displayed via down-regulation of the expression of tyrosinase.  相似文献   

13.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

14.
The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema model in mice determined the anti-inflammatory activities in vivo of argentatins A, B and D, the main cycloartenol-type triterpenes present in Parthenium argentatum. Our results showed that argentatin B (ED50 = 1.5 × 10−4 mmol/ear) and argentatin A (ED50 = 2.8 × 10−4 mmol/ear) were more potent anti-inflammatory agents than indomethacin (ED50 = 4.5 × 10−4 mmol/ear), the reference drug. Based on these findings, we decided to evaluate 13 derivatives of argentatins A and B. All the derivatives showed anti-inflammatory activity in the TPA-induced edema model in mice. The most active compound was 25-nor-cycloart-3, 16-dione-17-en-24-oic acid, obtained from argentatin A (ED50 = 1.4 × 10−4 mmol/ear). Argentatin B was assayed as inhibitor of COX-2 activity one of the key enzymes involved in the TPA assay. The results showed that argentatin B at 15 μM doses inhibited 77% COX-2 activity. Docking studies suggest that argentatin B interacts with Arg 120, a key residue for COX-2 activity.  相似文献   

15.
《Comptes rendus biologies》2019,342(1-2):7-17
This study was carried out in order to investigate the ability of tissues of Argania spinosa (L.) to undergo unlimited cell divisions by triggering their proliferative potential via callogenesis. Axenic cultures were efficiently established using axillary buds cultured on half-strength Murashige and Skoog (MS) medium after 20 min of surface sterilization with sodium hypochlorite 6% (v/v). The highest callus rate was achieved with 1.0 mg L−1 of naphthaleneacetic acid (NAA) and 1.0 mg L−1 of 2,4-dichlorophenoxyacetic acid (2,4D) or similarly with 0.01 mg L−1 of 6-benzylaminopurine (BAP) and 1.0 mg L−1 of 2,4D at pH of 5.8, under dark conditions. The results of this study show also a significant increase in the callus's antioxidant power under abiotic pressure induced by NaCl. Catalase (CAT), peroxidase (PO), and superoxide dismutase (SOD) activities were significantly triggered, which protected the cells from the stimulated oxidative stress, under hydrogen peroxide (H2O2) significant release. This reaction favors subsequently the tissue recover process linked to the low abundance of polyphenol oxidase (PPO) activity and malondialdehyde (MDA) content. This work proves the efficiency of salt stress in boosting the argan cell's antioxidant status, which could be commercially applied in the field of cells regenerative therapy.  相似文献   

16.
《Phytomedicine》2014,21(11):1298-1302
ObjectiveThe essential oil from the leaves of Ocimum kilimandscharicum (EOOK), collected in Dourados-MS, was investigated for anticancer, anti-inflammatory and antioxidant activity and chemical composition.Materials and methodsThe essential oil was extracted by hydrodistillation, and the chemical composition was performed by gas chromatography–mass spectrometry. The essential oil was evaluated for free radical-scavenging activity using the DPPH assay and was tested in an anticancer assay against ten human cancer cell lines. The response parameter (GI50) was calculated for the cell lines tested. The anti-inflammatory activity was evaluated using carrageenan-induced pleurisy in mice.ResultsThe chemical composition showed 45 components with a predominance of monoterpenes, such as camphor (51.81%), 1,8 cineole (20.13%) and limonene (11.23%). The EOOK exhibited potent free radical-scavenging activity by the DPPH assay with a GI50 of 8.31 μg/ml. The major constituents, pure camphor (IC50 = 12.56 μg/ml) and mixture of the limonene: 1, 8 cineole (IC50 = 23.25 μg/ml) displayed a potent activity. The oral administration of EOOK (at 30 and 100 mg kg−1), as well as the pure camphor or a mixture of 1,8 cineole with limonene, significantly inhibited the carrageenan (Cg) induced pleurisy, reducing the migration of total leukocytes in mice by 82 ± 4% (30 mg kg−1 of EOOK), 95 ± 4% (100 mg kg−1 of EOOK), 83 ± 9% (camphor) and 80 ± 5% (mixture of 1,8 cineole:limonene 1:1). In vitro cytotoxicity screening against a human ovarian cancer cell line displayed high selectivity and potent anticancer activity with GI50 = 31.90 mg ml−1. This work describes the anti-inflammatory, anticancer and antioxidant effects of EOOK for the first time.ConclusionsThe essential oil exhibited marked anti-inflammatory, antioxidant and anticancer effects, an effect that can be attributed the presence of majorital compounds, and the response profiles from chemical composition differed from other oils collected in different locales.  相似文献   

17.
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing two urea groups has been developed. Inhibition potency of the described compounds ranges from 2.0 μM to 0.4 nM. 1,6-(Hexamethylene)bis[(adamant-1-yl)urea] (3b) was found to be a potent slow tight binding inhibitor (IC50 = 0.5 nM) with a strong binding to sEH (Ki = 3.1 nM) and a moderately long residence time on the enzyme (koff = 1.05 × 10−3 s−1; t1/2 = 11 min).  相似文献   

18.
2-Phenyl-4-piperidinyl-6,7-dihydrothieno[3,4-d]pyrimidine derivative (2) was found to be a new PDE4 inhibitor with moderate PDE4B activity (IC50 = 150 nM). A number of derivatives with a variety of 4-amino substituents and fused bicyclic pyrimidines were synthesized. Among these, 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d]pyrimidine derivative (18) showed potent PDE4B inhibitory activity (IC50 = 25 nM). Finally, N-propylacetamide derivative (31b) was determined as a potent inhibitor for both PDE4B (IC50 = 7.5 nM) and TNF-α production in mouse splenocytes (IC50 = 9.8 nM) and showed good in vivo anti-inflammatory activity in the LPS-induced lung inflammation model in mice (ID50 = 18 mg/kg). The binding mode of the new inhibitor (31e) in the catalytic site of PDE4B is presented based on an X-ray crystal structure of the ligand–enzyme complex.  相似文献   

19.
Here a new class of hydroxy- or methoxy-substituted 5-benzylidene(thio)barbiturates were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed that several compounds had more potent tyrosinase inhibitory activities than the widely used tyrosinase inhibitor kojic acid (IC50 = 18.25 μM). In particular, 3′,4′-dihydroxylated 1e was found to be the most potent inhibitor with IC50 value of 1.52 μM. The inhibition mechanism analysis revealed that the potential compounds 1e and 2e exhibited such inhibitory effects on tyrosinase by acting as the irreversible inhibitors. Structure–activity relationships’ (SARs) analysis also suggested that further development of such compounds might be of interest.  相似文献   

20.
A series of (2-benzoylethen-1-ol)-containing benzothiazine derivatives was synthesized, and their herbicidal activities were first evaluated. The bioassay results indicated that some of 3-benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide derivatives displayed good herbicidal activity in greenhouse testing, especially, compound 4w had good pre-emergent herbicidal activities against Brassica campestris, Amaranthus retroflexus and Echinochloa crusgalli even at a dosage of 187.5 g ha−1. More importantly, compound 4w displayed significant inhibitory activity against Arabidopsis thaliana HPPD and was identified as the most potent candidate with IC50 value of 0.48 μM, which is better than the commercial herbicide sulctrione (IC50 = 0.53 μM) and comparable with the commercial herbicide mesotrione (IC50 = 0.25 μM). The structure–activity relationships was studied and provided some useful information for improving herbicidal activity. The present work indicated that (2-benzoylethen-1-ol)-containing 1,2-benzothiazine motif could be a potential lead structure for further development of novel HPPD inhibiting-based herbicides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号