首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Down syndrome (DS) is the most common genetic cause of intellectual disability, due to partial or complete triplication of chromosome 21. DS subjects are characterized by a number of abnormalities including premature aging and development of Alzheimer disease (AD) neuropathology after approximately 40 years of age. Several studies show that oxidative stress plays a crucial role in the development of neurodegeneration in the DS population. Increased lipid peroxidation is one of the main events causing redox imbalance within cells through the formation of toxic aldehydes that easily react with DNA, lipids, and proteins. In this study we used a redox proteomics approach to identify specific targets of 4-hydroxynonenal modifications in the frontal cortex from DS cases with and without AD pathology. We suggest that a group of identified proteins followed a specific pattern of oxidation in DS vs young controls, probably indicating characteristic features of the DS phenotype; a second group of identified proteins showed increased oxidation in DS/AD vs DS, thus possibly playing a role in the development of AD. The third group of comparison, DS/AD vs old controls, identified proteins that may be considered specific markers of AD pathology. All the identified proteins are involved in important biological functions including intracellular quality control systems, cytoskeleton network, energy metabolism, and antioxidant response. Our results demonstrate that oxidative damage is an early event in DS, as well as dysfunctions of protein-degradation systems and cellular protective pathways, suggesting that DS subjects are more vulnerable to oxidative damage accumulation that might contribute to AD development. Further, considering that the majority of proteins have been already demonstrated to be oxidized in AD brain, our results strongly support similarities with AD in DS.  相似文献   

2.
Summary A possible cause of non-disjunction of chromosome 21 in Down Syndromes has been cytogenetically evaluated by examining the parents by Ag-staining technique. In all the cases studied so far, the contributing parents have active ribosomal cistrons on both chromosomes 21 i.e. both chromosomes are stained positively by silver staining. These results show that the active NORs might play an essential role in meiotic non-disjunction. Furthermore, the preliminary results demonstrate that the acrocentric associations of homologous and non-homologous nature involving chromosome 21 are the most frequent in the contributing parent which may further indicate the role of multiple cellular factors affecting the associations in promoting the non-disjunction in addition to active NORs. The possible mechanisms regarding the non-disjunction of chromosome 21 have been described.Presented at the 34th Annual Meeting of the American Society of Human Genetics, Norfolk, VA, USA  相似文献   

3.

Background

Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways.

Results

Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression.

Conclusions

The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21.  相似文献   

4.
Down syndrome (DS) resulting from free trisomy 21 (FT21) has been largely associated with advanced maternal age. However, approximately 60% of FT21 cases are born to young couples. Thus, the etiological factors responsible for these FT21 children must differ from those proposed for maternal age-related FT21. These factors have not been defined. In this study, we analyzed the chromosomes of peripheral blood lymphocytes from three groups of couples aged ≤35 years, to identify chromosomal trisomies: Group I included 5 couples with normal offspring; Group II included 22 couples with one FT21 child; and Group III consisted of 3 couples with recurrent FT21. A total of 13,809 metaphases were analyzed with G-banding and 60,205 metaphases were analyzed with FISH using a 13/21 centromeric probe. Aneuploidy was significantly more frequent in Groups II and III. The frequencies of hyperdiploid cells were 0.19, 0.49 and 0.96% in Groups I–III, respectively. FISH analysis showed that trisomy 21 cell percentages were 0.08, 0.21 and 0.76 for Groups I–III, respectively, and were very similar to those obtained with G-banding. Trisomy 21 mosaicism was found in 2/22 couples with one FT21 offspring, and in 2/3 couples with recurrent FT21. Our data suggest that mosaicism is an important cause of FT21 offspring in young couples, and that aneuploidy is more frequent among couples with FT21 offspring. This may be related with age and other undetermined intrinsic and extrinsic factors.  相似文献   

5.
    
BACE2 is homologous to BACE1, a β‐secretase that is involved in the amyloidogenic pathway of amyloid precursor protein (APP), and maps to the Down syndrome critical region of chromosome 21. Alzheimer disease neuropathology is common in Down syndrome patients at relatively early ages, and it has thus been speculated that BACE2 co‐overexpression with APP would promote the early neurodegenerative phenotype. However, the in vivo function of BACE2 has not yet been elucidated. The aim of the present work has been to analyse the impact of in vivo BACE2 overexpression using a transgenic mouse model. Our results suggest that BACE2 is not involved in the amyloidogenic pathway, cognitive dysfunction or cholinergic degeneration. However, TgBACE2 animals showed increased anxiety‐like behaviour along with increased numbers of noradrenergic neurones in locus coeruleus, thus suggesting an unexpected role of BACE2 overexpression.  相似文献   

6.
    
Alzheimer disease (AD) is an age-related neurodegenerative condition. AD is histopathologically characterized by the presence of three main hallmarks: senile plaques (rich in amyloid-β peptide), neuronal fibrillary tangles (rich in phosphorylated tau protein), and synapse loss. However, definitive biomarkers for this devastating disease in living people are still lacking. In this study, we show that levels of oxidative stress markers are significantly increased in the mitochondria isolated from lymphocytes of subjects with mild cognitive impairment (MCI) compared to cognitively normal individuals. Further, an increase in mitochondrial oxidative stress in MCI is associated with MMSE score, vitamin E components, and β-carotene. Further, a proteomics approach showed that alterations in the levels of thioredoxin-dependent peroxide reductase, myosin light polypeptide 6, and ATP synthase subunit β might be important in the progression and pathogenesis of AD. Increased understanding of oxidative stress and protein alterations in easily obtainable peripheral tissues will be helpful in developing biomarkers to combat this devastating disorder.  相似文献   

7.
In brain, nucleoside diphosphate kinase (NDPK) and its coding gene, nm23, have been implicated to modulate neuronal cell proliferation, differentiation, and neurite outgrowth. However, a role of NDPK in neurodegenerative diseases has not been reported yet. Using proteomics techniques, we evaluated the protein levels of NDPK-A in seven brain regions from patients with Alzheimer's disease (AD) and Down syndrome (DS) showing AD-like neuropathology. NDPK-A was significantly decreased in brain regions (frontal, occipital, and parietal cortices) of both disorders. Due to the limitation of brain samples, the activity of NDPK was measured in three brain regions (frontal cortex, temporal cortex, and cerebellum). The specific activity of NDPK was significantly decreased in AD (frontal cortex) and DS (frontal and temporal cortices). Since NDPK-B could also drive the activity of NDPK, protein expression levels of both NDPK-A and NDPK-B were studied in frontal cortex by Western blot analysis. NDPK-A was significantly decreased in AD, which was consistent with the results of proteomics. However, NDPK-A was slightly decreased in DS and protein expression levels of NDPK-B in both DS and AD were moderately decreased, without reaching statistical significance. We propose that oxidative modification of NDPK could lead to the decreased activity of NDPK and, subsequently, influence several neuronal functions in neurodegenerative diseases as multifunctional enzyme through several mechanisms.  相似文献   

8.
    
The objective of this study was to evaluate the contribution of ultrasound scanning to the prenatal detection of trisomy 21 in a large unselected European population. Data from 19 congenital malformation registers in 11 European countries were included. The prenatal ultrasound screening programs in the countries ranged from no routine screening to three ultrasound investigations per patient. Routine serum screening was offered in four of the 11 countries and routine screening on the basis of maternal age amniocentesis in all. The results show that overall 53% of cases of trisomy 21 were detected prenatally with a range from 3% in Lithuania to 88% in Paris. Ninety-eight percent of women whose babies were diagnosed before 24 weeks gestation chose to terminate the pregnancy. Centres/countries that offer serum screening do not have a significantly higher detection rate of trisomy 21 when compared to those that offer maternal age amniocentesis and anomaly scanning only. Fifty percent of trisomy 21 cases were born to women aged 35 years or more. In conclusions, second trimester ultrasound plays an important role in the prenatal diagnosis of trisomy 21. Of those cases prenatally diagnosed, 64% of cases in women <35 years and 36% of those in women >or=35 years were detected because of an ultrasound finding. Ultrasound soft markers accounted for 84% of the scan diagnoses. There is evidence of increasing maternal age across Europe with 50% of cases of trisomy 21 born to women aged 35 years or more.  相似文献   

9.
    
Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to β‐amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD‐related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD‐related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker‐characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma‐free model to study AD‐related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.  相似文献   

10.
11.
Amyloid-β has long been implicated in the pathogenesis of Alzheimer disease. The focus was initially on the extracellular fibrillar deposits of amyloid-β but more recently has shifted to intracellular oligomeric forms of amyloid-β. Unfortunately, the mechanism(s) by which either extracellular or intracellular amyloid-β induces neuronal toxicity remains unclear. That said, a number of recent studies indicate that mitochondria might be an important target of amyloid-β. Neurons rely heavily on mitochondria for energy and it is well established that mitochondrial dysfunction might be an important target of amyloid-β. Mechanistically, amyloid-β aggregates in mitochondria to impair function, leading to energy hypometabolism and elevated reactive oxygen species production. Additionally, amyloid-β affects the balance of mitochondrial fission/fusion and mitochondrial transport, negatively impacting a host of cellular functions of neurons. Here, we review the role that amyloid-β plays in mitochondrial structure and function of neurons and the importance of this in the pathogenesis of Alzheimer disease.  相似文献   

12.
Down syndrome (DS) is the most common genetic cause of intellectual disability in children, and the number of adults with DS reaching old age is increasing. By the age of 40 years, virtually all people with DS have sufficient neuropathology for a postmortem diagnosis of Alzheimer disease (AD). Trisomy 21 in DS leads to an overexpression of many proteins, of which at least two are involved in oxidative stress and AD: superoxide dismutase 1 (SOD1) and amyloid precursor protein (APP). In this study, we tested the hypothesis that DS brains with neuropathological hallmarks of AD have more oxidative and nitrosative stress than those with DS but without significant AD pathology, as compared with similarly aged-matched non-DS controls. The frontal cortex was examined in 70 autopsy cases (n = 29 control and n = 41 DS). By ELISA, we quantified soluble and insoluble Aβ40 and Aβ42, as well as oligomers. Oxidative and nitrosative stress levels (protein carbonyls, 4-hydroxy-2-trans-nonenal (HNE)-bound proteins, and 3-nitrotyrosine) were measured by slot-blot. We found that soluble and insoluble amyloid beta peptide (Aβ) and oligomers increase as a function of age in DS frontal cortex. Of the oxidative stress markers, HNE-bound proteins were increased overall in DS. Protein carbonyls were correlated with Aβ40 levels. These results suggest that oxidative damage, but not nitrosative stress, may contribute to the onset and progression of AD pathogenesis in DS. Conceivably, treatment with antioxidants may provide a point of intervention to slow pathological alterations in DS.  相似文献   

13.
    
Alzheimer disease (AD) is characterized by extracellular senile plaques, intracellular neurofibrillary tangles, and memory loss. Aggregated amyloid-β (Aβ), oxidative stress, and inflammation have pivotal roles in the pathogenesis of AD. Therefore, the inhibition of Aβ-induced neurotoxicity, oxidative stress, and inflammation is a potential therapeutic strategy for the treatment of AD. In this study, a heptapeptide, isolated from a Ph.D.-C7C library by phage display, attenuated Aβ42-induced cytotoxicity in SH-SY5Y neuroblastoma cells and reduced Aβ42-induced oxidative stress by decreasing the production of reactive oxygen species and glutathione disulfide. As a result, glutathione level increased and superoxide dismutase and glutathione peroxidase activities were enhanced in vitro and in vivo. This peptide also suppressed the inflammatory response by decreasing the release of proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1β, in microglia and by reducing microgliosis and astrogliosis in AD transgenic mice. This peptide was intracerebroventricularly administered to APPswe/PS1dE9 transgenic mice. We found that this peptide significantly improved spatial memory and reduced the amyloid plaque burden and soluble and insoluble Aβ levels. Our findings suggest that this multifunctional peptide has therapeutic potential for an Aβ-targeted treatment of AD.  相似文献   

14.
We have investigated histologically the elevations of the skin in dorsal and lateral neck (nuchal) regions of human fetuses carrying karyotypes of trisomy 18 (Edwards' syndrome) and trisomy 21 (Down's syndrome). Cavities filled with interstitial fluid were found in the dermis, epidermal basement membrane and occasionally in the epidermis of trisomy-18 fetuses, but were not delineated by an epithelium or basement membrane as judged by the absence of immunostaining for laminin, collagen IV and collagen VII. Dilated vessels were also found at the interface between dermis and subcutis. Neither normal fetal skin nor that of trisomy-21 fetuses contained cavities or dilated vessels. In order to detect possible alterations of the extracellular matrix in trisomy-18 and trisomy-21 skin, the distribution of glycoproteins, glycosaminoglycans and proteoglycans was studied immunohistochemically. In trisomy-21 and control skin, the dermis stained intensely for fibronectin, whereas the subcutis reacted only weakly. In trisomy-18 skin, the stronger staining for fibronectin appeared in the subcutis, and the prevailing collagen type was collagen III, collagen type I being absent. In the skin of trisomy-21 fetuses, collagen VI was more irregularly arranged and densely packed, whereas collagen I was more widely spaced than in normal fetuses. More hyaluronan was present in the dermis and subcutis of trisomy-21 fetuses than in that of trisomy-18 and control fetuses. A correlation seems to exist between undelimited cavities and collagen III in trisomy-18 skin, and between hyaluronan and the specific arrangement of collagen in trisomy-21 skin.Abbreviations bm Basement membrane - ep epidermis - d dermis - sc subcutis - hf hair follicle - c capillary This article is dedicated to Professor Dr. Konrad Märkel on the occasion of his 70th birthday  相似文献   

15.
Neurofibrillary tangles (aggregates of cytoskeletal Tau protein) and senile plaques (aggregates mainly formed by amyloid β peptide) are two landmark lesions in Alzheimer׳s disease. Some researchers have proposed tangles, whereas others have proposed plaques, as primary lesions. For a long time, these were thought of as independent mechanisms. However, experimental evidence suggests that both lesions are intimately related. We review here some molecular pathways linking amyloid β and Tau toxicities involving, among others, glycogen synthase kinase 3β, p38, Pin1, cyclin-dependent kinase 5, and regulator of calcineurin 1. Understanding amyloid β and Tau toxicities as part of a common pathophysiological mechanism may help to find molecular targets to prevent or even treat the disease.  相似文献   

16.
Growing evidence suggests a strong association between cardiovascular risk factors and incidence of Alzheimer disease (AD). Asymmetric dimethylarginine (ADMA), the endogenous nitric oxide synthase inhibitor, has been identified as an independent cardiovascular risk factor and is also increased in plasma of patients with AD. However, whether ADMA is involved in the pathogenesis of AD is unknown. In this study, we found that ADMA content was increased in a transgenic Caenorhabditis elegans β-amyloid (Aβ) overexpression model, strain CL2006, and in human SH-SY5Y cells overexpressing the Swedish mutant form of human Aβ precursor protein (APPsw). Moreover, ADMA treatment exacerbated Aβ-induced paralysis and oxidative stress in CL2006 worms and further elevated oxidative stress and Aβ secretion in APPsw cells. Knockdown of type 1 protein arginine N-methyltransferase to reduce ADMA production failed to show a protective effect against Aβ toxicity, but resulted in more paralysis in CL2006 worms as well as increased oxidative stress and Aβ secretion in APPsw cells. However, overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) to promote ADMA degradation significantly attenuated oxidative stress and Aβ secretion in APPsw cells. Collectively, our data support the hypothesis that elevated ADMA contributes to the pathogenesis of AD. Our findings suggest that strategies to increase DDAH1 activity in neuronal cells may be a novel approach to attenuating AD development.  相似文献   

17.
Down syndrome is the most common birth defect, which is causedby trisomy 21. We identified a novel gene in the so-called Downsyndrome critical region by EST mapping to genomic DNA and followingcDNA cloning. The gene, designated DCRB (Down syndrome CriticalRegion gene B), consisted ofthree exons of1095 bp in total andencoded a large open reading frame of118 amino acid residues.The amino acids sequence ofDCRB showed no significant homologyto any known protein. Northern blot analysis showed that DCRBis mainly expressed in the placenta, in which a major 1.1-kbband and a minor 2.0-kb band were detected. Minor bands of 1.4kb and 2.2 kb were also detected in adult heart and skeletalmuscle.  相似文献   

18.
    
Down syndrome (DS, trisomy 21) is the leading cause of chromosomal-related intellectual disability. At an early age, adults with DS develop with the neuropathological hallmarks of Alzheimer’s disease, associated with a chronic oxidative stress. To investigate if non-protein bound iron (NPBI) can contribute to building up a pro-oxidative microenvironment, we evaluated NPBI in both plasma and erythrocytes from DS and age-matched controls, together with in vivo markers of lipid peroxidation (F2-isoprostanes, F2-dihomo-isoprostanes, F4-neuroprostanes) and in vitro reactive oxygen species (ROS) formation in erythrocytes. The serum iron panel and uric acid were also measured. Second, we explored possible correlation between NPBI, lipid peroxidation and cognitive performance. Here, we report NPBI increase in DS, which correlates with increased serum ferritin and uric acid. High levels of lipid peroxidation markers and intraerythrocyte ROS formations were also reported. Furthermore, the scores of Raven’s Colored Progressive Matrices (RCPM) test, performed as a measure of current cognitive function, are inversely related to NPBI, serum uric acid, and ferritin. Likewise, ROS production, F2-isoprostanes, and F4-neuroprostanes were also inversely related to cognitive performance, whereas serum transferrin positively correlated to RCPM scores. Our data reveal that increased availability of free redox-active iron, associated with enhanced lipid peroxidation, may be involved in neurodegeneration and cognitive decline in DS. In this respect, we propose chelation therapy as a potential preventive/therapeutic tool in DS.  相似文献   

19.
    
《Cell reports》2020,30(4):1152-1163.e4
  1. Download : Download high-res image (170KB)
  2. Download : Download full-size image
  相似文献   

20.
It has been widely accepted that vascular hypoperfusion induces oxidative stress and the outcome of this misbalance is brain energy failure. This abnormality leads to neuronal death which manifests as cognitive impairment and the development of brain pathology as in Alzheimer's disease (AD). It has been demonstrated that the AD brain is characterized by impairments in energy metabolism. We theorize that hypoperfusion induced mitochondrial failure plays a key role in the generation of reactive oxygen species, resulting in oxidative damage to brain cellular compartments, especially in the vascular endothelium and in selective population of neurons with high metabolic activity in the AD brain. All of these abnormalities have been found to occur before classic AD pathology inducing neuronal degeneration and amyloid deposition during the progression of AD. Therefore, expanding investigations into both the mechanisms behind amyloid beta (Abeta) deposition and the possible accelerating effects of environmental factors such as chronic hypoxia/reperfusion may open a new avenue for effective treatments of AD. Future studies examining the importance of mitochondrial pathobiology in brain cellular compartments provide insight not only into the better understanding of the neurodegenerative and/or cerebrovascular disease but also provide targets for treating these conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号