首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于数据依赖的扫描模式(data-dependent acquisition, DDA)和数据非依赖的扫描模式(data-independent acquisition,DIA)的非标记定量(label-free quantitative,LFQ)和同位素标记TMT (tandem mass tag)定量是蛋白质组学定量中较常见的技术.本文利用最新的Orbitrap Exploris 480质谱,优化了DDA、FAIMS DDA、FAIMS DIA的非标记定量方法以及TMT定量策略的关键质谱参数,并将其应用在人细胞蛋白质组、单细胞蛋白质组、血浆蛋白质组和酵母蛋白质组分析.结果表明,在DDA实验中,设置碰撞能量为27、二级谱图的分辨率为15 K、最大离子注入时间为22 ms是最佳的参数组合.针对极微量样品200 pg~5 ng,可以根据样品量相应设置最佳的质谱参数.使用200 pg和500 pg的HeLa细胞样品,分别鉴定到1 259和1 725个蛋白质,从而实现了单细胞蛋白质组学的深度覆盖.在FAIMS DDA实验中,60 min或90 min梯度时选择CV-45V的补偿电压,120 ...  相似文献   

2.
A variety of quantitative proteomics methods have been developed, including label-free, metabolic labeling, and isobaric chemical labeling using iTRAQ or TMT. Here, these methods were compared in terms of the depth of proteome coverage, quantification accuracy, precision, and reproducibility using a high-performance hybrid mass spectrometer, LTQ Orbitrap Velos. Our results show that (1) the spectral counting method provides the deepest proteome coverage for identification, but its quantification performance is worse than labeling-based approaches, especially the quantification reproducibility; (2) metabolic labeling and isobaric chemical labeling are capable of accurate, precise, and reproducible quantification and provide deep proteome coverage for quantification; isobaric chemical labeling surpasses metabolic labeling in terms of quantification precision and reproducibility; and (3) iTRAQ and TMT perform similarly in all aspects compared in the current study using a CID-HCD dual scan configuration. On the basis of the unique advantages of each method, we provide guidance for selection of the appropriate method for a quantitative proteomics study.  相似文献   

3.
Laborious sample pretreatment of biological samples represents the most limiting factor for the translation of targeted proteomics assays from research to clinical routine. An optimized method for the simultaneous quantitation of 12 major apolipoproteins (apos) combining on‐line SPE and fast LC‐MS/MS analysis in 6.5 min total run time was developed, reducing the manual sample pretreatment time of 3 μL serum or plasma by 60%. Within‐run and between‐day imprecisions below 10 and 15% (n = 10) and high recovery rates (94–131%) were obtained applying the high‐throughput setup. High‐quality porcine trypsin was used, which outperformed cost‐effective bovine trypsin regarding digestion efficiency. Comparisons with immunoassays and another LC‐MS/MS assay demonstrated good correlation (Pearson's R: 0.81–0.98). Further, requirements on sample quality concerning sampling, processing, and long‐term storage up to 1 year were investigated revealing significant influences of the applied sampling material and coagulant on quantitation results. Apo profiles of 1339 subjects of the LIFE‐Adult‐Study were associated with lifestyle and physiological parameters as well as establish parameters of lipid metabolism (e.g., triglycerides, cholesterol). Besides gender effects, most significant impact was seen regarding lipid‐lowering medication. In conclusion, this novel highly standardized, high‐throughput targeted proteomics assay utilizes a fast, simultaneous analysis of 12 apos from least sample amounts.  相似文献   

4.
Much attention has been given to protein biomarker discovery in the field of proteomics in the past few years. Proteomic strategies for biomarker discovery normally include the identification of proteins that alter during the progression of a particular disease state in high throughput. To perform these studies requires the ability to measure changes of low-abundance proteins in highly complex mixtures from different biological states. Soluble polymer-based isotope labeling (SoPIL) is a new proteomics strategy that targets specific classes of proteins for isotopic labeling, efficient isolation and accurate quantitation by mass spectrometry. The method exploits the features of homogenous solution-phase reaction, simple solid-phase extraction and characteristic cell-permeable nanoparticles. Recent applications demonstrate that the SoPIL reagents are ideal for quantitative proteomics and phosphoproteomics, and could have the potential to discover disease markers in the most physiologically relevant settings.  相似文献   

5.
Much attention has been given to protein biomarker discovery in the field of proteomics in the past few years. Proteomic strategies for biomarker discovery normally include the identification of proteins that alter during the progression of a particular disease state in high throughput. To perform these studies requires the ability to measure changes of low-abundance proteins in highly complex mixtures from different biological states. Soluble polymer-based isotope labeling (SoPIL) is a new proteomics strategy that targets specific classes of proteins for isotopic labeling, efficient isolation and accurate quantitation by mass spectrometry. The method exploits the features of homogenous solution-phase reaction, simple solid-phase extraction and characteristic cell-permeable nanoparticles. Recent applications demonstrate that the SoPIL reagents are ideal for quantitative proteomics and phosphoproteomics, and could have the potential to discover disease markers in the most physiologically relevant settings.  相似文献   

6.
Isobaric peptide labeling plays an important role in relative quantitative comparisons of proteomes. Isobaric labeling techniques utilize MS/MS spectra for relative quantification, which can be either based on the relative intensities of reporter ions in the low mass region (iTRAQ and TMT) or on the relative intensities of quantification signatures throughout the spectrum due to isobaric peptide termini labeling (IPTL). Due to the increased quantitative information found in MS/MS fragment spectra generated by the recently developed IPTL approach, new software was required to extract the quantitative information. IsobariQ was specifically developed for this purpose; however, support for the reporter ion techniques iTRAQ and TMT is also included. In addition, to address recently emphasized issues about heterogeneity of variance in proteomics data sets, IsobariQ employs the statistical software package R and variance stabilizing normalization (VSN) algorithms available therein. Finally, the functionality of IsobariQ is validated with data sets of experiments using 6-plex TMT and IPTL. Notably, protein substrates resulting from cleavage by proteases can be identified as shown for caspase targets in apoptosis.  相似文献   

7.
Methods for isobaric tagging of peptides, iTRAQ or TMT, are commonly used platforms in mass spectrometry based quantitative proteomics. These two methods are very often used to quantitate proteins in complex samples, e.g., serum/plasma or CSF supporting biomarker discovery studies. The success of these studies depends on multiple factors, including the accuracy of ratios of reporter ions reflecting quantitative changes of proteins. Because reporter ions are generated during peptide fragmentation, the differences of chemical structure of iTRAQ balance groups may have an effect on how efficiently these groups are fragmented and thus how differences in protein expression will be measured. Because 4-plex and 8-plex iTRAQ reagents do have different structures of balanced groups, it has been postulated that indeed differences in protein identification and quantitation exist between these two reagents. In this study we controlled the ratios of tagged samples and compared quantitation of proteins using 4-plex versus 8-plex reagents in the context of a highly complex sample of human plasma using ABSciex 4800 MALDI-TOF/TOF mass spectrometer and ProteinPilot 4.0 software. We observed that 8-plex tagging provides more consistent ratios than 4-plex without compromising protein identification, thus allowing investigation of eight experimental conditions in one analytical experiment.  相似文献   

8.
Mollusc shells represent excellent systems for the preservation and retrieval of genuine biomolecules from archaeological or palaeontological samples. As a consequence, the post-mortem breakdown of intracrystalline mollusc shell proteins has been extensively investigated, particularly with regard to its potential use as a “molecular clock” for geochronological applications. But despite seventy years of ancient protein research, the fundamental aspects of diagenesis-induced changes to protein structures and sequences remain elusive. In this study we investigate the degradation of intracrystalline proteins by performing artificial degradation experiments on the shell of the thorny oyster, Spondylus gaederopus, which is particularly important for archaeological research. We used immunochemistry and tandem mass tag (TMT) quantitative proteomics to simultaneously track patterns of structural loss and of peptide bond hydrolysis.Powdered and bleached shell samples were heated in water at four different temperatures (80, 95, 110, 140 °C) for different time durations. The structural loss of carbohydrate and protein groups was investigated by immunochemical techniques (ELLA and ELISA) and peptide bond hydrolysis was studied by tracking the changes in protein/peptide relative abundances over time using TMT quantitative proteomics. We find that heating does not induce instant organic matrix decay, but first facilitates the uncoiling of cross-linked structures, thus improving matrix detection. We calculated apparent activation energies of structural loss: Ea (carbohydrate groups) = 104.7 kJ/mol, Ea (protein epitopes) = 104.4 kJ/mol, which suggests that secondary matrix structure degradation may proceed simultaneously with protein hydrolysis. While prolonged heating at 110 °C (10 days) results in complete loss of the structural signal, surviving peptide sequences were still observed. Eight hydrolysis-prone peptide bonds were identified in the top scoring shell sequence, the uncharacterised protein LOC117318053 from Pecten maximus. Interestingly, these were not the expected “weak” bonds based on published theoretical stabilities calculated for peptides in solution. This further confirms that intracrystalline protein degradation patterns are complex and that the overall microchemical environment plays an active role in protein stability. Our TMT approach represents a major stepping stone towards developing a model for studying protein diagenesis in biomineralised systems.  相似文献   

9.
The aim of the present study was to investigate the occurrence of mycotoxins in commercial dog food, as a basis to estimate the risk of adverse effects. Seventy-six dry dog food samples from 27 producers were purchased from retail shops, supermarkets, and specialized pet food shops in Vienna, Austria. The frequency and levels of deoxynivalenol (DON), zearalenone (ZEA), fumonisins (FUM), ochratoxin A (OTA). and aflatoxins (AF) in dry dog food were determined. Mycotoxin analysis were performed by commercial enzyme-linked immunosorbent assay (ELISA) test kits. Confirmatory analyses were done for DON, ZEA, and FUM by high performance liquid chromatography (HPLC) after extract clean-up with immunoaffinity columns. The correlations between ELISA and HPLC results for DON and ZEA were acceptable and indicated that ELISA could be a simple, low cost, and sensitive screening tool for mycotoxins detection, contributing to quality and safety of pet food. DON was the mycotoxin most frequently found (83% positives; median 308 μg/kg, maximum 1,390 μg/kg). ZEA (47% positives, median 51 μg/kg and maximum 298 μg/kg) and FUM (42% positives, median 122 μg/kg and maximum 568 μg/kg) were also frequently detected in dog food. OTA was less frequently found (5%, median 3.6 μg/kg, maximum 4.7 μg/kg. AF were not detected (<0.5 μg/kg) in any sample. The results show that dry dog food marketed in Vienna are frequently contaminated with mycotoxins (DON > ZEA > FUM > OTA) in low concentrations, but do not contain AF. The high frequency of Fusarium toxins DON, ZEA, and FUM indicates the need for intensive control measures to prevent mycotoxins in dog foods. The mycotoxin levels found in dry dog food are considered as safe in aspects of acute mycotoxicoses. However, repeated and long-time exposure of dogs to low levels of mycotoxins may pose a health risk.  相似文献   

10.
Jean Armengaud 《Proteomics》2015,15(17):2898-2900
Derivatization of proteins with specific isotope reagents has been widely explored for quantitative proteomics where the relative abundances of proteins present in different complex samples are compared by MS. This represents an interesting arena for innovation, where protein chemistry and MS are associated for the best of both worlds. Among the numerous reagents developed, those that introduce a permanent positive charge, such as (N‐succinimidyloxycarbonylmethyl)‐tris(2,4,6‐trimethoxyphenyl)phosphonium bromide (TMPP), increase the ionizability of their targets and thus improve the sensitivity of the approach. TMPP labeling also modifies the hydrophobicity and changes the peptide fragmentation pattern. Because TMPP reacts preferably with the N‐termini of proteins and peptides, its use has been explored for proteogenomics and de novo protein sequencing. In this issue of Proteomics, Shen et al. (Proteomics 2015, 15, 2903–2909) show that accurate quantitation of proteins can be obtained with light/heavy TMPP‐labeling of peptides, which can be easily prepared and desalted in a homemade C8‐SCX‐C8 stagetip, and then monitored by nano‐LC‐MS/MS analysis. Their results demonstrate enhanced sequence coverage compared with other approaches. Combined with an efficient enrichment procedure, the higher sensitivity of this “positive attitude” reagent may facilitate much deeper investigations into the quantitative proteomics of complex samples.  相似文献   

11.
定量蛋白质组学是对蛋白质组进行精确的定量和鉴定的学科,突破了传统蛋白质组研究集中于对蛋白质的分离和鉴定,着重于定性定量解析细胞蛋白质的动态变化信息,更真实地反映了细胞功能、过程机制等综合信息。以同位素为内标的质谱分析新技术的提出,显示出可同时自动鉴定和精确定量的能力,代表了目前定量蛋白质组研究的主要发展方向。对近年来定量蛋白质组学同位素标记技术和应用研究所取得的重要进展以及最新的发展动态进行了综述。  相似文献   

12.
DNA‐assisted proteomics technologies enable ultra‐sensitive measurements in multiplex format using DNA‐barcoded affinity reagents. Although numerous antibodies are available, nowadays targeting nearly the complete human proteome, the majority is not accessible at the quantity, concentration, or purity recommended for most bio‐conjugation protocols. Here, we introduce a magnetic bead‐assisted DNA‐barcoding approach, applicable for several antibodies in parallel, as well as reducing required reagents quantities up to a thousand‐fold. The success of DNA‐barcoding and retained functionality of antibodies were demonstrated in sandwich immunoassays and standard quantitative Immuno‐PCR assays. Specific DNA‐barcoding of antibodies for multiplex applications was presented on suspension bead arrays with read‐out on a massively parallel sequencing platform in a procedure denoted Immuno‐Sequencing. Conclusively, human plasma samples were analyzed to indicate the functionality of barcoded antibodies in intended proteomics applications.  相似文献   

13.
In quantitative shotgun proteomic analyses by liquid chromatography and mass spectrometry, a rigid study design is necessary in order to obtain statistically relevant results. Hypothesis testing, sample size calculation and power estimation are fundamental concepts that require consideration upon designing an experiment. For this reason, the reproducibility and variability of the proteomic platform needs to be assessed. In this study, we evaluate the technical (sample preparation), labeling (isobaric labels), and total (biological + technical + labeling + experimental) variability and reproducibility of a workflow that employs a shotgun LC-MS/MS approach in combination with TMT peptide labeling for the quantification of peripheral blood mononuclear cell (PBMC) proteome. We illustrate that the variability induced by TMT labeling is small when compared to the technical variation. The latter is also responsible for a substantial part of the total variation. Prior knowledge about the experimental variability allows for a correct design, a prerequisite for the detection of biologically significant disease-specific differential proteins in clinical proteomics experiments.  相似文献   

14.
Bone is an active tissue, in which bone formation by osteoblast is followed by bone resorption by osteoclasts, in a repeating cycle. Proteomics approaches may allow the detection of changes in cell signal transduction, and the regulatory mechanism of cell differentiation. LC-MS/MS-based quantitative methods can be used with labeling strategies, such as SILAC, iTRAQ, TMT and enzymatic labeling. When used in combination with specific protein enrichment strategies, quantitative proteomics methods can identify various signaling molecules and modulators, and their interacting proteins in bone metabolism, to elucidate biological functions for the newly identified proteins in the cellular context. In this article, we will briefly review recent major advances in the application of proteomics for bone biology, especially from the aspect of cellular signaling. [BMB Reports 2014; 47(3): 141-148]  相似文献   

15.
The ability to identify and quantitate integral membrane proteins is an analytical challenge for mass spectrometry-based proteomics. The use of surfactants to solubilize and facilitate derivatization of these proteins can suppress peptide ionization and interfere with chromatographic separations during microcapillary reversed-phase liquid chromatography-electrospray-tandem mass spectrometry. To circumvent the use of surfactants and increase proteome coverage, an affinity labeling method has been developed to target highly hydrophobic integral membrane proteins using organic-assisted extraction and solubilization followed by cysteinyl-specific labeling using biotinylation reagents. As demonstrated on the membrane subproteome of Deinococcus radiodurans, specific and quantitative labeling of integral membrane proteins was achieved using a 60% methanol-aqueous buffer system and (+)-biotinyl-iodoacetamidyl-3,6-dioxaoctanediamine as the cysteinyl-alkylating reagent. From a total of 220 unique Cys-labeled peptides, 89 proteins were identified, of which 40 were integral membrane proteins containing from one to nine mapped transmembrane domains with a maximum positive GRAVY of 1.08. The protocol described can be used with other stable isotope labeling reagents (e.g., ICAT) to enable comparative measurements to be made on differentially expressed hydrophobic membrane proteins from various organisms (e.g., pathogenic bacteria) and cell types and provide a viable method for comparative proteome-wide analyses.  相似文献   

16.
BACKGROUND: Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. RESULTS: Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. CONCLUSION: The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.  相似文献   

17.
Quantitative analysis of the trace element content of human intervertebral discs (IVDs) is essential because it can identify specific enzymes or metabolites that may be related to human intervertebral disc degeneration (IVDD). The goal of this study was to assess the concentrations of copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), sodium (Na), magnesium (Mg), potassium (K), phosphorus (P), and calcium (Ca) in serum samples obtained from patients with IVDD in comparison to healthy volunteers (a control group). The study group consisted of 113 Caucasian patients qualified by a specialist neurosurgeon for microdiscectomy. The control group consisted of 113 healthy volunteers who met the eligibility criteria for blood donors. The examined clinical material was the serum samples obtained from both groups.Based on the quantitative analysis of selected elements, there were statistically significantly (p 0.05) higher concentrations of Cu (1180 μg/L±800 μg/L vs. 1230 μg/L±750 μg/L), Zn (790 μg/L±300 μg/L vs. 850 μg/L±200 μg/L), and Mg (21730 μg/L±4360 μg/L vs. 23820 μg/L±4990 μg/L) in the serum of healthy volunteers compared to those in the study group. In addition, statistically significant changes were not detected in the concentrations of any elements among either sex in either the study or control group or in their body mass index (BMI) values (p > 0.05). In the serum samples from the study group, the strongest relationships were noted between the concentrations of Zn and Pb (r = 0.61), Zn and P (r = 0.69), Zn and Ca (r = 0.84), Zn and Cu (r = 0.83), Mg and Ca (r = 0.74), and Ca and P (r = 0.98).It has been indicated that, above all, the concentrations of Cu, Zn, Ca, and Mg depend on the advancement of radiological changes, according to the Pfirrmann scale. However, no influence on pain intensity was found, depending on the concentration of the assessed elements.The analysis indicates that the determination of serum Cu, Zn, Ca, and Mg concentrations may have diagnostic significance in predicting the onset of lumbosacral IVDD. The predictive evaluation of changes in the concentrations of selected elements in patients with degenerative lumbar IVD lesions appears to be a promising, cost-effective strategy.  相似文献   

18.
Within the past decade numerous methods for quantitative proteome analysis have been developed of which all exhibit particular advantages and disadvantages. Here, we present the results of a study aiming for a comprehensive comparison of ion-intensity based label-free proteomics and two label-based approaches using isobaric tags incorporated at the peptide and protein levels, respectively. As model system for our quantitative analysis we used the three hepatoma cell lines HepG2, Hep3B and SK-Hep-1. Four biological replicates of each cell line were quantitatively analyzed using an RPLC–MS/MS setup. Each quantification experiment was performed twice to determine technical variances of the different quantification techniques. We were able to show that the label-free approach by far outperforms both TMT methods regarding proteome coverage, as up to threefold more proteins were reproducibly identified in replicate measurements. Furthermore, we could demonstrate that all three methods show comparable reproducibility concerning protein quantification, but slightly differ in terms of accuracy. Here, label-free was found to be less accurate than both TMT approaches. It was also observed that the introduction of TMT labels at the protein level reduces the effect of underestimation of protein ratios, which is commonly monitored in case of TMT peptide labeling. Previously reported differences in protein expression between the particular cell lines were furthermore reproduced, which confirms the applicability of each investigated quantification method to study proteomic differences in such biological systems. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.  相似文献   

19.
We report a new quantitative proteomics approach that combines the best aspects of stable isotope labeling of amino acids in cell culture (SILAC) labeling and spectral counting. The SILAC peptide count ratio analysis (SPeCtRA, http://proteomics.mcw.edu/visualize ) method relies on MS2 spectra rather than ion chromatograms for quantitation and therefore does not require the use of high mass accuracy mass spectrometers. The inclusion of a stable isotope label allows the samples to be combined before sample preparation and analysis, thus avoiding many of the sources of variability that can plague spectral counting. To validate the SPeCtRA method, we have analyzed samples constructed with known ratios of protein abundance. Finally, we used SPeCtRA to compare endothelial cell protein abundances between high (20 mM) and low (11 mM) glucose culture conditions. Our results demonstrate that SPeCtRA is a protein quantification technique that is accurate and sensitive as well as easy to automate and apply to high‐throughput analysis of complex biological samples.  相似文献   

20.
Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号