首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate whether mice genetically unaltered by many generations of laboratory selection exhibit similar hormonal and demographic responses to caloric restriction (CR) as laboratory rodents, we performed CR on cohorts of genetically heterogeneous male mice which were grandoffspring of wild-caught ancestors. Although hormonal changes, specifically an increase in corticosterone and decrease in testosterone, mimicked those seen in laboratory-adapted rodents, we found no difference in mean longevity between ad libitum (AL) and CR dietary groups, although a maximum likelihood fitted Gompertz mortality model indicated a significantly shallower slope and higher intercept for the CR group. This result was due to higher mortality in CR animals early in life, but lower mortality late in life. A subset of animals may have exhibited the standard demographic response to CR in that the longest-lived 8.1% of our animals were all from the CR group. Despite the lack of a robust mean longevity difference between groups, we did note a strong anticancer effect of CR as seen in laboratory rodents. Three plausible interpretations of our results are the following: (1) animals not selected under laboratory conditions do not show the typical CR effect; (2) because wild-derived animals eat less when fed AL, our restriction regime was too severe to see the CR effect; or (3) there is genetic variation for the CR effect in wild populations; variants that respond to CR with extended life are inadvertently selected for under conditions of laboratory domestication.  相似文献   

2.
While many studies have focused on the detrimental effects of advanced maternal age and harmful prenatal environments on progeny, little is known about the role of beneficial non‐Mendelian maternal inheritance on aging. Here, we report the effects of maternal age and maternal caloric restriction (CR) on the life span and health span of offspring for a clonal culture of the monogonont rotifer Brachionus manjavacas. Mothers on regimens of chronic CR (CCR) or intermittent fasting (IF) had increased life span compared with mothers fed ad libitum (AL). With increasing maternal age, life span and fecundity of female offspring of AL‐fed mothers decreased significantly and life span of male offspring was unchanged, whereas body size of both male and female offspring increased. Maternal CR partially rescued these effects, increasing the mean life span of AL‐fed female offspring but not male offspring and increasing the fecundity of AL‐fed female offspring compared with offspring of mothers of the same age. Both maternal CR regimens decreased male offspring body size, but only maternal IF decreased body size of female offspring, whereas maternal CCR caused a slight increase. Understanding the genetic and biochemical basis of these different maternal effects on aging may guide effective interventions to improve health span and life span.  相似文献   

3.
The hypothesis that the life-extending effect of caloric restriction (CR) is associated with an attenuation of the age-related pro-oxidant shift in the thiol redox state was tested employing a novel experimental design. Amounts of GSH, GSSG, and protein mixed disulfides (Pr-SSG) in the skeletal muscle and liver were compared between two strains of mice that have similar life spans when fed ad libitum (AL), but different life spans under the standard CR regimen. The life span of one strain, C57BL/6, is extended under CR, whereas it remains unaffected in the other strain, DBA/2. Mice were fed AL or 40% less food starting at 4 months and compared at 6 and 24 months of age. The amounts of GSSG and Pr-SSG increased and the GSH:GSSG ratios decreased with age in both strains of AL-fed mice. CR prevented these age-related changes in the C57BL/6, whose life span is extended by CR, but not in the DBA/2 mice, in which it remains unaffected. CR enhanced the activity of glutamate-cysteine ligase in the C57BL/6, but not in the DBA/2 mice. The results suggest that longevity extension by CR may be associated with the attenuation of age-related pro-oxidizing shifts in the thiol redox state.  相似文献   

4.
-A variety of physiological and behavioral parameters which relate to metabolism were continuously monitored in 18 month old female Fischer 344 rats which were maintained on either ad libitum or reduced calorie diets. Caloric restriction (CR) stimulated average motor activity per day, the duration of each feeding episode, food consumed per episode, and water consumed per gram lean body mass (LBM). However, CR limited total food consumption, feeding time, number of feeding episodes per day, total eating and drinking time, and the daily ratio of food consumed to water consumed, CR also decreased average body temperature per day, O2 consumption, CO2, production, and respiratory quotient. A variety of parameters concerning water consumption were not affected. CR rats ate their food immediately when food was presented during the light span, while ad libitum fed animals ate numerous small meals throughout the entire dark span. An anticipatory response to restricted feeding was also noted. Total motor activity, metabolism, and body temperature increased just prior to scheduled feeding and reached maximum values shortly after feeding, suggesting that these parameters were highly synchronized to feeding. Females and males were found to respond to caloric restriction in a similar fashion. Dramatic changes in respiratory quotient and body temperature suggest rapid shifts between metabolic pathways (glycolysis to giuconeogenesis) to obtain optimal efficiency. Lower body temperature and metabolism may provide protection against DNA damage, thereby increasing the survival potential of restricted rats. These responses may provide insight into the mechanisms by which caloric restriction acts to extend life span.  相似文献   

5.
Abstract A publication by Shanley and Kirkwood (2000) attempts to explain data on caloric restriction (CR) and life extension in the context of the Disposable Soma (DS) theory for the evolution of senescence. As the authors concede, this juxtaposition appears at first to offend intuition: According to the DS theory, senescence is the result of a tight budget for caloric energy, such that repair and maintenance functions are shortchanged; yet, in CR experiments, it is found that longevity decreases smoothly as the total caloric budget is increased. In the Shanley-Kirkwood model, an optimized allocation of resources causes energy to be diverted away from somatic maintenance at a greater rate than caloric intake increases, with the net result that more total energy is associated with less energy available for maintenance. In the present critique, the limitations of this model are detailed and its special assumptions reviewed. While the CR experiments find comparable life extension for males and females, measured relative to nonbreeding controls, the Shanley-Kirkwood model draws its energy budget from data on breeding females. In addition, the success in reproducing the observed relationship between feeding and longevity depends crucially on a mathematical relationship between food availability and the probability of reproductive success which may be difficult to justify.  相似文献   

6.
The purpose of this study was to understand the nature of the causes underlying the senescence-related decline in skeletal muscle mass and performance. Protein and lipid oxidative damage to upper hindlimb skeletal muscle mitochondria was compared between mice fed ad libitum and those restricted to 40% fewer calories—a regimen that increases life span by 30–40% and attenuates the senescence-associated decrement in skeletal muscle mass and function. Oxidative damage to mitochondrial proteins, measured as amounts of protein carbonyls and loss of protein sulfhydryl content, and to mitochondrial lipids, determined as concentration of thiobarbituric acid reactive substances, significantly increased with age in the ad libitum-fed (AL) C57BL/6 mice. The rate of superoxide anion radical generation by submitochondrial particles increased whereas the activities of antioxidative enzymes superoxide dismutase, catalase, and glutathione peroxidase in muscle homogenates remained unaltered with age in the AL group. In calorically-restricted (CR) mice there was no age-associated increase in mitochondrial protein or lipid oxidative damage, or in superoxide anion radical generation. Crossover studies, involving the transfer of 18- to 22-month-old mice fed on the AL regimen to the CR regimen, and vice versa, indicated that the mitochondrial oxidative damage could not be reversed by CR or induced by AL feeding within a time frame of 6 weeks. Results of this study indicate that mitochondria in skeletal muscles accumulate significant amounts of oxidative damage during aging. Although such damage is largely irreversible, it can be prevented by restriction of caloric intake.  相似文献   

7.
A reduction in dietary calories has been shown to prolong life span in a wide variety of taxa, but there has been much debate about confounding factors such as nutritional composition of the diet, or reallocation of nutrients from reduced reproduction. To disentangle the contribution of these different mechanisms to extension of life span, we study the effect of caloric restriction on longevity and fecundity in two species of sugar-feeding parasitoid wasps. They have a simple diet that consists of carbohydrates only, and they do not resorb eggs, which rules out the proposed alternative explanations for beneficial effects of caloric restriction. Two caloric restriction treatments were applied: first, dietary dilution to investigate the effect of carbohydrate concentration in the diet; and second, intermittent feeding to examine the effect of feeding frequency on longevity and fecundity. Only the dietary dilution treatment showed an effect of caloric restriction with the highest longevity recorded at 80% sucrose (w/v). No effect of dietary regime was found on fecundity. We also measured the weight increase of the parasitoids after feeding to obtain an estimate of consumption. A constant quantity of the sugar solution was consumed in all dietary dilution treatments, hence caloric intake was proportional to sucrose concentrations. Although the present study does not disqualify the relevance of nutrient composition in other species, our data unequivocally demonstrate that caloric restriction alone is sufficient to extend life span and invalidate alternative explanations.  相似文献   

8.
Objective: We used a rodent model of dietary obesity to evaluate effects of caloric restriction‐induced weight loss on mortality rate. Research Measures and Procedures: In a randomized parallel‐groups design, 312 outbred Sprague‐Dawley rats (one‐half males) were assigned at age 10 weeks to one of three diets: low fat (LF; 18.7% calories as fat) with caloric intake adjusted to maintain body weight 10% below that for ad libitum (AL)‐fed rat food, high fat (HF; 45% calories as fat) fed at the same level, or HF fed AL. At age 46 weeks, the lightest one‐third of the AL group was discarded to ensure a more obese group; the remaining animals were randomly assigned to one of three diets: HF‐AL, HF with energy restricted to produce body weights of animals restricted on the HF diet throughout life, or LF with energy restricted to produce the body weights of animals restricted on the LF diet throughout life. Life span, body weight, and leptin levels were measured. Results: Animals restricted throughout life lived the longest (p < 0.001). Life span was not different among animals that had been obese and then lost weight and animals that had been nonobese throughout life (p = 0.18). Animals that were obese and lost weight lived substantially longer than animals that remained obese throughout life (p = 0.002). Diet composition had no effect on life span (p = 0.52). Discussion: Weight loss after the onset of obesity during adulthood leads to a substantial increase in longevity in rats.  相似文献   

9.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   

10.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   

11.
热量限制是一种有效的延缓衰老的方法,它不仅能延长实验动物的寿命,还能推迟和减少多种老龄相关疾病的发生,但长期严格的热量限制对人类较难实施,因此类似的人体试验相对较少。基于对热量限制抗衰老作用机制的研究促使了热量限制模拟物的出现,使得热量限制这种延衰策略在人类施行成为可能。本文介绍了热量限制延衰机制的最新研究进展,并根据热量限制模拟物作用机制的不同,分别对下游型热量限制模拟物AMPK激活剂、m TOR抑制剂和Sirtuins激活剂,及上游型热量限制模拟物2-脱氧葡萄糖、D-葡糖胺和壳聚糖进行综述。  相似文献   

12.
Imai S 《Aging cell》2007,6(6):735-737
The Sir2 (silent information regulator 2) family of nicotinamide adenine dinucleotide-dependent deacetylases has been implicated in the regulation of aging and longevity across a wide variety of organisms. Although controversial, Sir2 proteins have also been implicated as key mediators for the beneficial effects of caloric restriction (CR) on aging and longevity. In this issue, Bordone et al . report that transgenic mice in which the mammalian Sir2 ortholog Sirt1 is overexpressed mimic the physiological changes in response to CR. These findings have important implications for the development of CR mimetics and perhaps also for lifespan extension.  相似文献   

13.
Robust biological rhythms have been shown to affect life span. Biological clocks can be entrained by two feeding regimens, restricted feeding (RF) and caloric restriction (CR). RF restricts the time of food availability, whereas CR restricts the amount of calories with temporal food consumption. CR is known to retard aging and extend life span of animals via yet-unknown pathways. We hypothesize that resetting the biological clock could be one possible mechanism by which CR extends life span. Because it is experimentally difficult to uncouple calorie reduction from temporal food consumption, we took advantage of the murine urokinase-like plasminogen activator (alphaMUPA) transgenic mice overexpressing a serine protease implicated in brain development and plasticity; they exhibit spontaneously reduced eating and increased life span. Quantitative real-time PCR analysis revealed that alphaMUPA mice exhibit robust expression of the clock genes mPer1, mPer2, mClock, and mCry1 but not mBmal1 in the liver. We also found changes in the circadian amplitude and/or phase of clock-controlled output systems, such as feeding behavior, body temperature, and enteric cryptdin expression. A change in the light-dark regimen led to modified clock gene expression and abrogated circadian patterns of food intake in wild-type (WT) and alphaMUPA mice. Consequently, food consumption of WT mice increased, whereas that of alphaMUPA mice remained the same, indicating that reduced food intake occurs upstream and independently of the biological clock. Thus we surmise that CR could lead to pronounced and synchronized biological rhythms. Because the biological clock controls mitochondrial, hormonal, and physiological parameters, system synchronicity could lead to extended life span.  相似文献   

14.
Caloric restriction (CR) has positive effects on health and longevity. CR in mammals implements time‐restricted (TR) feeding, a short period of feeding followed by prolonged fasting. Periodic fasting, in the form of TR or mealtime, improves metabolism without reduction in caloric intake. In order to understand the relative contribution of reduced food intake and periodic fasting to the health benefits of CR, we compared physiological and metabolic changes induced by CR and TR (without reduced food intake) in mice. CR significantly reduced blood glucose and insulin around the clock, improved glucose tolerance, and increased insulin sensitivity (IS). TR reduced blood insulin and increased insulin sensitivity, but in contrast to CR, TR did not improve glucose homeostasis. Liver expression of circadian clock genes was affected by both diets while the mRNA expression of glucose metabolism genes was significantly induced by CR, and not by TR, which is in agreement with the minor effect of TR on glucose metabolism. Thus, periodic fasting contributes to some metabolic benefits of CR, but TR is metabolically different from CR. This difference might contribute to differential effects of CR and TR on longevity.  相似文献   

15.
Caloric restriction (CR) has been widely accepted as a mechanism explaining increased lifespan (LS) in organisms subjected to dietary restriction (DR), but recent studies investigating the role of nutrients have challenged the role of CR in extending longevity. Fuelling this debate is the difficulty in experimentally disentangling CR and nutrient effects due to compensatory feeding (CF) behaviour. We quantified CF by measuring the volume of solution imbibed and determined how calories and nutrients influenced LS and fecundity in unmated females of the Queensland fruit fly, Bactocera tryoni (Diptera: Tephritidae). We restricted flies to one of 28 diets varying in carbohydrate:protein (C:P) ratios and concentrations. On imbalanced diets, flies overcame dietary dilutions, consuming similar caloric intakes for most dilutions. The response surface for LS revealed that increasing C:P ratio while keeping calories constant extended LS, with the maximum LS along C:P ratio of 21:1. In general, LS was reduced as caloric intake decreased. Lifetime egg production was maximized at a C:P ratio of 3:1. When given a choice of separate sucrose and yeast solutions, each at one of five concentrations (yielding 25 choice treatments), flies regulated their nutrient intake to match C:P ratio of 3:1. Our results (i) demonstrate that CF can overcome dietary dilutions; (ii) reveal difficulties with methods presenting fixed amounts of liquid diet; (iii) illustrate the need to measure intake to account for CF in DR studies and (iv) highlight nutrients rather than CR as a dominant influence on LS.  相似文献   

16.
Aging impairs arterial function through oxidative stress and diminished nitric oxide (NO) bioavailability. Life‐long caloric restriction (CR) reduces oxidative stress, but its impact on arterial aging is incompletely understood. We tested the hypothesis that life‐long CR attenuates key features of arterial aging. Blood pressure, pulse wave velocity (PWV, arterial stiffness), carotid artery wall thickness and endothelium‐dependent dilation (EDD; endothelial function) were assessed in young (Y: 5–7 month), old ad libitum (Old AL: 30–31 month) and life‐long 40% CR old (30–31 month) B6D2F1 mice. Blood pressure was elevated with aging (P < 0.05) and was blunted by CR (P < 0.05 vs. Old AL). PWV was 27% greater in old vs. young AL‐fed mice (P < 0.05), and CR prevented this increase (P < 0.05 vs. Old AL). Carotid wall thickness was greater with age (P < 0.05), and CR reduced this by 30%. CR effects were associated with amelioration of age‐related changes in aortic collagen and elastin. Nitrotyrosine, a marker of cellular oxidative stress, and superoxide production were greater in old AL vs. young (P < 0.05) and CR attenuated these increase. Carotid artery EDD was impaired with age (P < 0.05); CR prevented this by enhancing NO and reducing superoxide‐dependent suppression of EDD (Both P < 0.05 vs. Old AL). This was associated with a blunted age‐related increase in NADPH oxidase activity and p67 expression, with increases in superoxide dismutase (SOD), total SOD, and catalase activities (All P < 0.05 Old CR vs. Old AL). Lastly, CR normalized age‐related changes in the critical nutrient‐sensing pathways SIRT‐1 and mTOR (P < 0.05 vs. Old AL). Our findings demonstrate that CR is an effective strategy for attenuation of arterial aging.  相似文献   

17.
Calorie restriction (CR) extends life span in many different organisms, including mammals. We describe here a novel pathway that extends the life span of Saccharomyces cerevisiae mother cells but does not involve a reduction in caloric content of the media, i.e., there is growth of yeast cells in the presence of a high concentration of external osmolytes. Like CR, this longevity-promoting response to high osmolarity requires SIR2, suggesting a common mechanism of life span regulation. Genetic and microarray analysis indicates that high osmolarity extends the life span by activating Hog1p, leading to an increase in the biosynthesis of glycerol from glycolytic intermediates. This metabolic shift likely increases NAD levels, thereby activating Sir2p and promoting longevity.  相似文献   

18.
Many previous investigations have consistently reported that caloric restriction (40%), which increases maximum longevity, decreases mitochondrial reactive species (ROS) generation and oxidative damage to mitochondrial DNA (mtDNA) in laboratory rodents. These decreases take place in rat liver after only seven weeks of caloric restriction. Moreover, it has been found that seven weeks of 40% protein restriction, independently of caloric restriction, also decrease these two parameters, whereas they are not changed after seven weeks of 40% lipid restriction. This is interesting since it is known that protein restriction can extend longevity in rodents, whereas lipid restriction does not have such effect. However, before concluding that the ameliorating effects of caloric restriction on mitochondrial oxidative stress are due to restriction in protein intake, studies on the third energetic component of the diet, carbohydrates, are needed. In the present study, using semipurified diets, the carbohydrate ingestion of male Wistar rats was decreased by 40% below controls without changing the level of intake of the other dietary components. After seven weeks of treatment the liver mitochondria of the carbohydrate restricted animals did not show changes in the rate of mitochondrial ROS production, mitochondrial oxygen consumption or percent free radical leak with any substrate (complex I- or complex II-linked) studied. In agreement with this, the levels of oxidative damage in hepatic mtDNA and nuclear DNA were not modified in carbohydrate restricted animals. Oxidative damage in mtDNA was one order of magnitude higher than that in nuclear DNA in both dietary groups. These results, together with previous ones, discard lipids and carbohydrates, and indicate that the lowered ingestion of dietary proteins is responsible for the decrease in mitochondrial ROS production and oxidative damage in mtDNA that occurs during caloric restriction.  相似文献   

19.
Calorie restriction is a dietary regimen capable of extending life span in a variety of multicellular organisms. A yeast model of calorie restriction has been developed in which limiting the concentration of glucose in the growth media of Saccharomyces cerevisiae leads to enhanced replicative and chronological longevity. Since S. cerevisiae are Crabtree-positive cells that present repression of aerobic catabolism when grown in high glucose concentrations, we investigated if this phenomenon participates in life span regulation in yeast. S. cerevisiae only exhibited an increase in chronological life span when incubated in limited concentrations of glucose. Limitation of galactose, raffinose or glycerol plus ethanol as substrates did not enhance life span. Furthermore, in Kluyveromyces lactis, a Crabtree-negative yeast, glucose limitation did not promote an enhancement of respiratory capacity nor a decrease in reactive oxygen species formation, as is characteristic of conditions of caloric restriction in S. cerevisiae. In addition, K. lactis did not present an increase in longevity when incubated in lower glucose concentrations. Altogether, our results indicate that release from repression of aerobic catabolism is essential for the beneficial effects of glucose limitation in the yeast calorie restriction model. Potential parallels between these changes in yeast and hormonal regulation of respiratory rates in animals are discussed. G. A. Oliveira and E. B. Tahara contributed equally to this work.  相似文献   

20.
Chronic dietary restriction (DR) is considered among the most robust life-extending interventions, but several reports indicate that DR does not always extend and may even shorten lifespan in some genotypes. An unbiased genetic screen of the lifespan response to DR has been lacking. Here, we measured the effect of one commonly used level of DR (40% reduction in food intake) on mean lifespan of virgin males and females in 41 recombinant inbred strains of mice. Mean strain-specific lifespan varied two to threefold under ad libitum (AL) feeding and 6- to 10-fold under DR, in males and females respectively. Notably, DR shortened lifespan in more strains than those in which it lengthened life. Food intake and female fertility varied markedly among strains under AL feeding, but neither predicted DR survival: therefore, strains in which DR shortened lifespan did not have low food intake or poor reproductive potential. Finally, strain-specific lifespans under DR and AL feeding were not correlated, indicating that the genetic determinants of lifespan under these two conditions differ. These results demonstrate that the lifespan response to a single level of DR exhibits wide variation amenable to genetic analysis. They also show that DR can shorten lifespan in inbred mice. Although strains with shortened lifespan under 40% DR may not respond negatively under less stringent DR, the results raise the possibility that life extension by DR may not be universal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号