首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Recently, phospholipid peroxidation products gained a reputation as key regulatory molecules and participants in oxidative signaling pathways. During apoptosis, a mitochondria-specific phospholipid, cardiolipin (CL), interacts with cytochrome c (cyt c) to form a peroxidase complex that catalyzes CL oxidation; this process plays a pivotal role in the mitochondrial stage of the execution of the cell death program. This review is focused on redox mechanisms and essential structural features of cyt c’s conversion into a CL-specific peroxidase that represent an interesting and maybe still unique example of a functionally significant ligand change in hemoproteins. Furthermore, specific characteristics of CL in mitochondria—its asymmetric transmembrane distribution and mechanisms of collapse, the regulation of its synthesis, remodeling, and fatty acid composition—are given significant consideration. Finally, new concepts in drug discovery based on the design of mitochondria-targeted inhibitors of cyt c/CL peroxidase and CL peroxidation with antiapoptotic effects are presented.  相似文献   

2.
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met80) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c+/+ cells than in cytochrome c−/− cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.  相似文献   

3.
The key stage of apoptosis is lipid peroxidation which causes cytochrome c efflux from mitochondria. Cardiolipin-bound cytochrome c on the surface of the inner mitochondrial membrane is supposed to be a main lipoperoxidation catalyst. In this work, lipoperoxide radical (LOO·) production in the complex of cytochrome c (Cyt C) with bovine heart cardiolipin (BCL) was investigated with the method of chemiluminescence (CL) in the presence of a physical activator, coumarin dye C-525. It was shown that a CL flash with a half quenching time of 1.12 min was observed after the addition of Cyt C to a BCL+C-525 solution in the absence of hydrogen peroxide. At H2O2 concentrations of 0.1–0.5 mM, quenching time reduced at constant CL flash amplitude and at H2O2 concentrations of 1–5 mM, the amplitude of CL increased with the growth of peroxide concentration. It testifies to different mechanisms of BCL oxidation: the lipoxygenase mechanism in the absence of H2O2 and at low H2O2 concentrations, and the peroxidase mechanism at higher H2O2 concentrations. When small H2O2 amounts were added, another CL flash was observed in the course of a lipoxygenase reaction whose light sum increased with time in parallel with the extent of the following inhibition of CL. Iron chelators EDTA and o-phenanthroline made no significant effect on the CL associated with cytochrome c lipoxygenase action, while desferal, a well-known peroxidase and lipoxygenase inhibitor, inhibited CL by half in a concentration of 18 μM. A scheme of reactions resulting in LOO· radical production on BCL oxidation by the Cyt C-cardiolipin complex in the absence and in the presence of H2O2 was suggested.  相似文献   

4.
Oxidative stress causes selective oxidation of cardiolipin (CL), a fourtail lipid specific for the inner mitochondrial membrane. Interaction with oxidized CL transforms cytochrome c into peroxidase capable of oxidizing even more CL molecules. Ultimately, this chain of events leads to the pore formation in the outer mitochondrial membrane and release of mitochondrial proteins, including cytochrome c, into the cytoplasm. In the cytoplasm, cytochrome c promotes apoptosome assembly that triggers apoptosis (programmed cell death). Because of this amplification cascade, even an occasional oxidation of a single CL molecule by endogenously formed reactive oxygen species (ROS) might cause cell death, unless the same CL oxidation triggers a separate chain of antiapoptotic reactions that would prevent the CL-mediated apoptotic cascade. Here, we argue that the key function of CL in mitochondria and other coupling membranes is to prevent proton leak along the interface of interacting membrane proteins. Therefore, CL oxidation should increase proton permeability through the CL-rich clusters of membrane proteins (CL islands) and cause a drop in the mitochondrial membrane potential (MMP). On one hand, the MMP drop should hinder ROS generation and further CL oxidation in the entire mitochondrion. On the other hand, it is known to cause rapid fission of the mitochondrial network and formation of many small mitochondria, only some of which would contain oxidized CL islands. The fission of mitochondrial network would hinder apoptosome formation by preventing cytochrome c release from healthy mitochondria, so that slowly working protein quality control mechanisms would have enough time to eliminate mitochondria with the oxidized CL. Because of these two oppositely directed regulatory pathways, both triggered by CL oxidation, the fate of the cell appears to be determined by the balance between the CL-mediated proapoptotic and antiapoptotic reactions. Since this balance depends on the extent of CL oxidation, mito-chondria-targeted antioxidants might be able to ensure cell survival in many pathologies by preventing CL oxidation.  相似文献   

5.
Cytochrome c (Cyt c) was rapidly oxidized by molecular oxygen in the presence, but not absence of PEG. The redox potential of heme c was determined by the potentiometric titration to be +236?±?3?mV in the absence of PEG, which was negatively shifted to +200?±?4?mV in the presence of PEG. The underlying the rapid oxidation was explored by examining the structural changes in Cyt c in the presence of PEG using UV–visible absorption, circular dichroism, resonance Raman, and fluorescence spectroscopies. These spectroscopic analyses suggested that heme oxidation was induced by a modest tertiary structural change accompanied by a slight shift in the heme position (<1.0?Å) rather than by partial denaturation, as is observed in the presence of cardiolipin. The near-infrared spectra showed that PEG induced dehydration from Cyt c, which triggered heme displacement. The primary dehydration site was estimated to be around surface-exposed hydrophobic residues near the heme center: Ile81 and Val83. These findings and our previous studies, which showed that hydrated water molecules around Ile81 and Val83 are expelled when Cyt c forms a complex with CcO, proposed that dehydration of these residues is functionally significant to electron transfer from Cyt c to CcO.  相似文献   

6.
7.
Natural and artificial nucleases have extensive applications in biotechnology and biomedicine. The exploration of protein with potential DNA cleavage activity also inspires the design of artificial nuclease and helps to understand the physiological process of DNA damage. In this study, we engineered four human cytochrome c (Cyt c) mutants (N52S, N52A, I81N, and I81D Cyt c), which showed enhanced DNA cleavage activity and degradation in comparison with WT Cyt c, especially under acidic conditions. The mechanism assays revealed that the superoxide (O2??) plays an important role in the nuclease reaction. The kinetic assays showed that the peroxidase activity of the I81D Cyt c mutant enhanced up to 9-fold at pH 5. This study suggests that the mutations of Ile81 and Asn52 in Ω-loop C/D are critical for the nuclease activity of Cyt c, which may have physiological significance in DNA damage and potential applications in biomedicine.  相似文献   

8.

Background

Cytochrome c (Cyt c) is a mobile component of the electron transport chain (ETC.) which contains a tightly coordinated heme iron. In pathologic settings, a key ligand of the cyt c's heme iron, methionine (Met80), is oxidized allowing cyt c to participate in reactions as a peroxidase with cardiolipin as a target. Myocardial ischemia (ISC) results in ETC. blockade and increased production of reactive oxygen species (ROS). We hypothesized that during ischemia–reperfusion (ISC-REP); ROS generation coupled with electron flow into cyt c would oxidize Met80 and contribute to mitochondrial-mediated ETC. damage.

Methods

Mitochondria were incubated with specific substrates and inhibitors to test the contributions of ROS and electron flow into cyt c. Subsequently, cyt c and cardiolipin were analyzed. To test the pathophysiologic relevance, mouse hearts that underwent ISC-REP were tested for methionine oxidation in cyt c.

Results

The combination of substrate/inhibitor showed that ROS production and electron flux through cyt c are essential for the oxidation of methionine residues that lead to cardiolipin depletion. The content of cyt c methionine oxidation increases following ISC-REP in the intact heart.

Conclusions

Increase in intra-mitochondrial ROS coupled with electron flow into cyt c, oxidizes cyt c followed by depletion of cardiolipin. ISC-REP increases methionine oxidation, supporting that cyt c peroxidase activity can form in the intact heart.

General significance

This study identifies a new site in the ETC. that is damaged during cardiac ISC-REP. Generation of a neoperoxidase activity of cyt c favors the formation of a defective ETC. that activates signaling for cell death.  相似文献   

9.
Cytochrome c (cyt c) is a small globular hemoprotein with the main function as an electron carrier in mitochondrial respiratory chain. Cyt c possesses also peroxidase-like activity in the native state despite its six-coordinated heme iron. In this work, we studied the effect of increasing urea concentration in the range from 0 M to 6 M at pH 7 (pH value of the bulk solvent) and pH 5 (pH value close to negatively charged membrane) on peroxidase-like activity of cyt c. We show that peroxidase-like activity, measured by guaiacol oxidation and the ferrous oxidation in xylenol orange methods, correlates with the accessibility of the heme iron, which was assessed from the association rate constant of cyanide binding to cyt c. Cyt c peroxidase-like activity linearly increases in the pre-denaturational urea concentrations (0–4 M) at both studied pHs without an apparent formation of penta-coordinated state of the heme iron. Our results suggest that dynamic equilibrium among the denaturant-induced non-native coordination states of cyt c, very likely due to reversible unfolding of the least stable foldons, is pre-requisite for enhanced peroxidase-like activity of cyt c in its compact state. Dynamic replacement of the native sixth coordination bond of methionine-80 by lysines (72, 73, and 79) and partially also by histidines (26 and 33) provides an efficient way how to increase peroxidase-like activity of cyt c without significant conformational change at physiological conditions.  相似文献   

10.
The functional and thermodynamic characteristics of the ubiquinolcytochrome (Cyt) c oxidoreductase in a Cyt b/c1-enriched fraction (defined S-1) isolated from Jerusalem artichoke mitochondria (JAM) (Helianthus tuberosus), have been analyzed. Fraction S-1, obtained through deoxycholate-KCl fractionation procedure, contained one Cyt of c type (formally c1 with Em7.0 of +240 millivolts), two b type Cyt with Em7.0 values of +100 and −25 millivolts, ferredoxin-like centers presumably linked to succinic- and NADH-dehydrogenases, and a Rieske-type iron sulfur center (gy = 1.89). The ubiquinol-dependent Cyt c reduction by fraction S-1 showed sensitivity to antimycin A, myxothiazol, and n-2-hepthyl-1-hydroxyquinoline N-oxide with I50 of 12 nanomolar, 30 nanomolar, and 0.1 micromolar, respectively. Oxidation-induced extra b type reduction, a widespread phenomenon of bacterial and mitochondrial respiratory systems, has also been observed in both intact mitochondria and S-1 fraction. The data seem to blur previous experiments in which both spectral and functional differences between higher plant and mammalian mitochondria have been underlined.  相似文献   

11.
Mitochondrial structure has a central role both in energy conversion and in the regulation of cell death. We have previously shown that IF1 protects cells from necrotic cell death and supports cristae structure by promoting the oligomerisation of the F1Fo-ATPsynthase. As IF1 is upregulated in a large proportion of human cancers, we have here explored its contribution to the progression of apoptosis and report that an increased expression of IF1, relative to the F1Fo-ATPsynthase, protects cells from apoptotic death. We show that IF1 expression serves as a checkpoint for the release of Cytochrome c (Cyt c) and hence the completion of the apoptotic program. We show that the progression of apoptosis engages an amplification pathway mediated by: (i) Cyt c-dependent release of ER Ca2+, (ii) Ca2+-dependent recruitment of the GTPase Dynamin-related protein 1 (Drp1), (iii) Bax insertion into the outer mitochondrial membrane and (iv) further release of Cyt c. This pathway is accelerated by suppression of IF1 and delayed by its overexpression. IF1 overexpression is associated with the preservation of mitochondrial morphology and ultrastructure, consistent with a central role for IF1 as a determinant of the inner membrane architecture and with the role of mitochondrial ultrastructure in the regulation of Cyt c release. These data suggest that IF1 is an antiapoptotic and potentially tumorigenic factor and may be a valuable predictor of responsiveness to chemotherapy.  相似文献   

12.
Generation of reactive oxygen species by damaged respiratory chain followed by the formation of cytochrome c (cyt c)-cardiolipin (CL) complex with peroxidase activity are early events in apoptosis. By quenching the peroxidase activity of cyt c-CL complexes in mitochondria, nitric oxide can exert anti-apoptotic effects. Therefore, mitochondria-targeted pro-drugs capable of gradual nitric oxide radical (NO) release are promising radioprotectants. Here we demonstrate that (2-hydroxyamino-vinyl)-triphenyl-phosphonium effectively accumulates in mitochondria, releases NO upon mitochondrial peroxidase reaction, protects mouse embryonic cells from irradiation-induced apoptosis and increases their clonogenic survival after irradiation. We conclude that mitochondria-targeted peroxidase-activatable NO-donors represent a new interesting class of radioprotectors.  相似文献   

13.
Tam ZY  Cai YH  Gunawan R 《Biophysical journal》2010,99(10):3155-3163
Mitochondrial regulation of apoptosis depends on the programmed release of proapoptotic proteins such as cytochrome c (Cyt c) through the outer mitochondrial membrane (OMM). Although a few key processes involved in this release have been identified, including the liberation of inner membrane-bound Cyt c and formation of diffusible pores on the OMM, other details like the transport of Cyt c within complex mitochondrial compartments, e.g., the cristae and crista junctions, are not yet fully understood (to our knowledge). In particular, a remodeling of the inner mitochondrial membrane accompanying apoptosis seen in a few studies, in which crista junctions widen, has been hypothesized to be a necessary step in the Cyt c release. Using a three-dimensional spatial modeling of mitochondrial crista and the crista junction, model simulations and analysis illustrated how the interplay among solubilization of Cyt c, fast diffusion of Cyt c, and OMM permeabilization gives rise to the observed experimental release profile. Importantly, the widening of the crista junction was found to have a negligible effect on the transport of free Cyt c from cristae. Finally, model simulations showed that increasing the fraction of free/loosely-bound Cyt c can sensitize the cell to apoptotic stimuli in a threshold manner, which may explain increased sensitivity to cell death associated with aging.  相似文献   

14.
Cytochrome c (cyt c) is a heme-containing protein that participates in electron transport in the respiratory chain and as a signaling molecule in the apoptotic cascade. Here we addressed the effect of removing mammalian cyt c on the integrity of the respiratory complexes in mammalian cells. Mitochondria from cyt c knockout mouse cells lacked fully assembled complexes I and IV and had reduced levels of complex III. A redox-deficient mutant of cyt c was unable to rescue the levels of complexes I and IV. We found that cyt c is associated with both complex IV and respiratory supercomplexes, providing a potential mechanism for the requirement for cyt c in the assembly/stability of complex IV.The mitochondrial electron transport chain consists of four multisubunit complexes, namely, NADH-ubiquinone oxidoreductase (complex I),2 succinate-ubiquinone oxidoreductase (complex II), ubiquinone-cytochrome c oxidoreductase (complex III), and cytochrome c oxidase (complex IV, COX). Cytochrome c (cyt c) shuttles electrons from oxidative phosphorylation complex III to complex IV. Electrons are transferred from reduced cyt c sequentially to the CuA site, heme a, heme a3, and CuB binuclear center in the complex IV before being finally transferred to molecular oxygen to generate water (1). Respiratory complexes are assembled into supercomplexes (also called respirasomes). These contain complex I bound to dimeric complex III and a variable copy number of complex IV (2).In Saccharomyces cerevisiae, cyt c is encoded by two genes: CYC1 and CYC7. Mutagenesis studies in yeast have shown that cyt c is required for the assembly of COX (3, 4). In yeast lacking both the cyt c genes (CYC1 and CYC7), COX assembly was absent. It was also shown that cyt c is only structurally required for COX assembly, because a catalytic mutant of cyt c (W65S) was sufficient to bring about near normal levels of COX. However, because yeast lacks complex I, they could not analyze the role of cyt c in the assembly/stability of complex I. Mammals possess two different isoforms of cyt c encoded on different chromosomes: the somatic (cyt cS)- and testis (cyt cT)-specific isoforms. In mouse, the cDNAs bear 74% homology, whereas the proteins possess 86% identity with most dissimilarity in the C terminus.Cardiolipin (CL) is an anionic phospholipid present almost exclusively in the mitochondrial membranes and constitutes 25% of its total phospholipids (5). Work from several laboratories showed that CL is essential for the membrane anchorage of the respiratory supercomplexes. CL has two main roles in the mitochondrial structure and function, namely, stabilization of mitochondrial membranes and specific interactions with proteins. CL deficiency results in inefficient energy transformation by oxidative phosphorylation, swelling of mitochondria, decreased ATP/oxygen ratio, and reduced membrane potential (6, 7). In accordance, in S. cerevisiae lacking CL synthase, the supercomplex comprising complexes III and IV is unstable (8). Assembly mutants of COX had significantly reduced CL synthase activity, whereas assembly mutants of respiratory complex III and complex V showed less inhibition (9). Subsequently, the proton gradient across the inner mitochondrial membrane was found to be important for CL formation and that CL synthase was stimulated by alkaline pH at the matrix side (10). In this study, we investigated the role of cyt c depletion on CL levels by examining its content and composition in cyt c null cells.Here we aimed to answer the following questions: What is the role of cyt c in the assembly and maintenance of the different respiratory complexes in mammals? Are there changes in the content/composition of lipids in the cyt c-ablated cells? Analysis of mouse fibroblasts revealed that cyt c is essential for the assembly/stability of COX, and a catalytically mutant form of cyt c cannot rescue the COX defect in the cyt c null cells. CL and triacylglycerols showed significant differences in the cyt c null cells, both in content and composition.  相似文献   

15.
《BBA》2020,1861(11):148262
BackgroundThe electrochemical and spectroscopic investigation of bacterial electron-transfer proteins stabilized on solid state electrodes has provided an effective approach for functional respiratory enzyme studies.MethodsWe assess the biocompatibility of carboxylated graphene oxide (CGO) functionalized with Nickel nitrilotriacetic groups (CGO-NiNTA) ccordinating His-tagged cytochrome c oxidase (CcO) from Rhodobacter sphaeroides.ResultsKinetic studies employing UV–visible absorption spectroscopy confirmed that the immobilized CcO oxidized horse-heart cytochrome c (Cyt c) albeit at a slower rate than isolated CcO. The oxygen reduction reaction as catalyzed by immobilized CcO could be clearly distinguished from that arising from CGO-NiNTA in the presence of Cyt c and dithiothreitol (DTT) as a sacrificial reducing agent. Our findings indicate that while the protein content is about 3.7‰ by mass with respect to the support, the contribution to the oxygen consumption activity averaged at 56.3%.ConclusionsThe CGO-based support stabilizes the free enzyme which, while capable of Cyt c oxidation, is unable to carry out oxygen consumption in solution on its own under our conditions. The turnover rate for the immobilized CcO was as high as 240 O2 molecules per second per CcO unit.General significanceIn vitro investigations of electron flow on isolated components of bacterial electron-transfer enzymes immobilized on the surface of CGO in suspension are expected to shed new light on microbial bioenergetic functions, that could ultimately contribute toward the improvement of performance in living organisms.  相似文献   

16.
Adaptation to changes in extracellular tonicity is essential for cell survival. However, severe or chronic hyperosmotic stress induces apoptosis, which involves cytochrome c (Cyt c) release from mitochondria and subsequent apoptosome formation. Here, we show that angiogenin-induced accumulation of tRNA halves (or tiRNAs) is accompanied by increased survival in hyperosmotically stressed mouse embryonic fibroblasts. Treatment of cells with angiogenin inhibits stress-induced formation of the apoptosome and increases the interaction of small RNAs with released Cyt c in a ribonucleoprotein (Cyt c-RNP) complex. Next-generation sequencing of RNA isolated from the Cyt c-RNP complex reveals that 20 tiRNAs are highly enriched in the Cyt c-RNP complex. Preferred components of this complex are 5′ and 3′ tiRNAs of specific isodecoders within a family of isoacceptors. We also demonstrate that Cyt c binds tiRNAs in vitro, and the pool of Cyt c-interacting RNAs binds tighter than individual tiRNAs. Finally, we show that angiogenin treatment of primary cortical neurons exposed to hyperosmotic stress also decreases apoptosis. Our findings reveal a connection between angiogenin-generated tiRNAs and cell survival in response to hyperosmotic stress and suggest a novel cellular complex involving Cyt c and tiRNAs that inhibits apoptosome formation and activity.  相似文献   

17.
Redox-controlled backbone dynamics in cytochrome c (Cyt c) were revealed by 2D 15N NMR relaxation experiments. 15N T1 and T2 values and 1H-15N NOEs of uniformly 15N-labeled reduced and oxidized Cyt c were measured, and the generalized order parameters (S2), the effective correlation time for internal motion (τe), the 15N exchange broadening contributions (Rex) for each residue, and the overall correlation time (τm) were estimated by model-free dynamics formalism. These dynamic parameters clearly showed that the backbone dynamics of Cyt c are highly restricted due to the covalently bound heme that functions as the stable hydrophobic core. Upon oxidation of the heme iron in Cyt c, the average S2 value was increased from 0.88 ± 0.01 to 0.92 ± 0.01, demonstrating that the mobility of the backbone is further restricted in the oxidized form. Such increases in the S2 values were more prominent in the loop regions, including amino acid residues near the thioether bonds to the heme moiety and positively charged region around Lys87. Both of the regions are supposed to form the interaction site for cytochrome c oxidase (CcO) and the electron pathway from Cyt c to CcO. The redox-dependent mobility of the backbone in the interaction site for the electron transfer to CcO suggests an electron transfer mechanism regulated by the backbone dynamics in the Cyt c-CcO system.  相似文献   

18.
The 4S cytochrome c (Cyt c) reductase activity of several plant species was markedly stimulated by cyanide and ferrocyanide but those of the 8S nitrate reductase component and other particulate components of the maize (Zea mays L.) scutellum by comparison, were increased only slightly. The effect of cyanide and ferrocyanide was not due to elimination of cytochrome oxidase interference but resulted from the stimulation of NADH-dependent reduction of Cyt c. A 4S Cyt c reductase component which could be isolated by ammonium sulfate fractionation and diethyl-aminoethyl-cellulose chromatography was found to be stimulated markedly by cyanide and ferrocyanide. The remaining 4S Cyt c reductase, which was insensitive to cyanide and ferrocyanide, was also fractionated with ammonium sulfate into two components. One of these, like the 8S Cyt c reductase, was sensitive to a protease from the maize roots which is relatively specific for nitrate reductase. This 4S Cyt c reductase species could be a subunit of nitrate reductase.  相似文献   

19.
The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the increased peroxidase activity that represents its pivotal proapoptotic function, but we do not observe evidence for large-scale unfolding or penetration into the membrane core.  相似文献   

20.
  • 1.1. The results of chemically crosslinking yeast cytochrome c peroxidase with both horse and yeast iso-1 ferricytochromes c have been studied by a combination of gel electrophoresis and proton NMR spectroscopy.
  • 2.2. The complexes were formed at a variety of potassium phosphate concentrations ranging from 10 to 300 mM using the water soluble crosslinking agent, EDC (l-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide).
  • 3.3. The primary crosslinking product in both cases is the 1:1 covalent complex, but, for each pair of partner proteins the yield of the 1:1 crosslinked complex varies with the salt concentration.
  • 4.4. Furthermore, at low salt concentrations the yield of the 1:1 covalent complex involving horse cytochrome c is much larger than the yield of the 1:1 covalent complex formed with yeast iso-1 cytochrome c, whereas at high salt concentrations the situation is reversed.
  • 5.5. Proton NMR spectroscopy, in combination with gel electrophoresis, provides evidence for the formation of different types of 1:1 complexes for the peroxidase/yeast cytochrome c pair and has been used to study the effect of changes in the solution ionic strength upon both the peroxidases/horse cytochrome c and the peroxidase/yeast cytochrome c complexes.
  • 6.6. This work indicates that electrostatic interactions between proteins play a dominant role in formation of complexes between cytochrome c peroxidase and horse ferricytochrome c, whereas the hydrophobic effect plays a comparatively larger role in stabilizing complexes between cytochrome c peroxidase and yeast iso-1 ferricytochrome c.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号