首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The effects of superoxide dismutase on H2O2 formation   总被引:1,自引:1,他引:1  
Numerous reports of the effects of overproduction of SODs have been explained on the basis of increased H2O2 production by the catalyzed dismutation of O2-. In this review we consider the effects of increasing [SOD] on H2O2 formation and question this explanation.  相似文献   

3.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

4.
The effect of consuming a low carotene diet (≈60 μg carotene/day) on oxidative susceptibility and superoxide dismutase (SOD) activity in women living in a metabolic research unit was evaluated. The diet had sufficient vitamins A, E, and C. The women ate the diet supplemented with 1500 μg/day β-carotene for 4 days (baseline), then the unsupplemented diet for 68 days (depletion), followed by the diet supplemented with > 15,000 μg/day carotene for 28 days (repletion). Production of hexanal, pentanal, and pentane by copper-oxidased plasma low density lipoproteins from carotene-depleted women was greater than their production of these compounds when repleted with carotene. Erythrocyte SOD activity was depressed in carotene-depleted women; it recovered with repletion. Thiobarbituric acid reactive substances in plasma of carotene-depleted women were elevated and diminished with repletion. Dietary carotene seems to be needed, not only as a precursor of vitamin A, but also to inhibit oxidative damage and decrease oxidation susceptibility.  相似文献   

5.
Saccharomyces cerevisiae could provide a simple experimental system for testing the antioxidant or pro-oxidant actions of chemicals, because it has the capacity for aerobic and anaerobic growth and can readily lose its mitochondrial electron transport chain (the major endogenous source of reactive oxygen species [ROS]). This study showed that yeast superoxide dismutase mutants, in a simple petri dish test, readily distinguish a compound that enhances the detrimental effects of endogenous ROS production by the mitochondrial respiratory chain from another chemical that generates oxidative stress by redox cycling. Using this system, weak organic acid food preservatives are shown to exert a strong pro-oxidant action on aerobic yeast cells. In addition these acids are mutagenic toward the yeast mitochondrial genome, even at levels that are subinhibitory to growth. This raises the concern that the large-scale consumption of these preservatives in the human diet may generate oxidative stress within the epithelia of the gastrointestinal tract.  相似文献   

6.
Abstract

Objectives

The objective of this study was to investigate the effects of catechin and epicatechin on the activity of the endogenous antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (as well as the total antioxidant capacity (TAC)) of rats after intra-peritoneal (i.p.) administration.

Methods

Twenty-four Wistar rats were randomly divided into two groups: the experimental group which was administered daily with a 1:1 mixture of epicatechin and catechin at a concentration of 23 mg/kg body weight for 10 days and the control group which was injected daily with an equal amount of saline. Blood and urine samples were collected before and after the administration period, as well as 10 days after (follow-up).

Results

Intra-peritoneal administration of catechins led to a potent decrease in GPx levels and a significant increase in SOD levels. TAC was significantly increased in plasma and urine. Malonaldehyde levels in urine remained stable. In the animals treated with catechins, SOD activity showed a moderate negative correlation with GPx activity.

Discussion

Boosting the activity of the antioxidant enzymes could be a potential adjuvant approach for the treatment of the oxidative stress-related diseases.  相似文献   

7.
Extracellular superoxide dismutase (EC SOD) is generally the least abundant SOD isozyme in tissues, while the intracellular Cu,Zn SOD is usually the most abundant isozyme. The biological significance of EC SOD is unknown. Immunolocalization studies show that EC SOD is in the connective tissue surrounding smooth muscle in vessels and airways within the lung. Endothelium derived relaxing factor, thought to be a nitric oxide (NO·) species, is a primary mediator of vascular relaxation. During NO·′ diffusion between the endothelium and smooth muscle, extracellular superoxide would be the most efficient scavenger of NO·. High levels of extracellualar superoxide dismutase in vessels could, therefore, be essential to enable NO' to modulate vascular tone. To evaluate the hypothesis that vessel walls are functionally rich in extracellular superoxide scavenging capacity, this study quantitates the EC SOD levels in pulmonary and systemic vessels and in airways. Both pulmonary and systemic arteries in humans and baboons were found to contain high activities of EC SOD. The level of EC SOD in all human and baboon arteries examined is greater than or equal to the level of intracellular Cu,Zn SOD, and EC SOD accounted for over 70% of the total SOD activity in some vessels examined. Immunolocalization of EC SOD in human and baboon vessels show similar distributions of this enzyme in pulmonary and systemic vessels. EC SOD is located beneath the endothelium, surrounding smooth muscle cells, and throughout the adventitia of vessels. The high level of EC SOD in vessels, and its localization between endothelial and smooth muscle cells, suggest that regulation of superoxide may be particularly important in this region, possibly in regulating vascular tone.  相似文献   

8.
Extracellular superoxide dismutase (EC-SOD) is expressed by both macrophages and neutrophils and is known to influence the inflammatory response. Upon activation, neutrophils generate hypochlorous acid (HOCl) and secrete proteases to combat invading microorganisms. This produces a hostile environment in which enzymatic activity in general is challenged. In this study, we show that EC-SOD exposed to physiologically relevant concentrations of HOCl remains enzymatically active and retains the heparin-binding capacity, although HOCl exposure established oxidative modification of the N-terminal region (Met32) and the formation of an intermolecular cross-link in a fraction of the molecules. The cross-linking was also induced by activated neutrophils. Moreover, we show that the neutrophil-derived proteases human neutrophil elastase and cathepsin G cleaved the N-terminal region of EC-SOD irrespective of HOCl oxidation. Although the cleavage by elastase did not affect the quaternary structure, the cleavage by cathepsin G dissociated the molecule to produce EC-SOD monomers. The present data suggest that EC-SOD is stable and active at the site of inflammation and that neutrophils have the capacity to modulate the biodistribution of the protein by generating EC-SOD monomers that can diffuse into tissue.  相似文献   

9.
The effect of temperature (from 1 to 37 °C) on in vitro effective superoxide dismutase (SOD) activity of several organisms was investigated and compared. Antarctic plankton, cultures of the alga Nannochloropsis sp., and the cyanobacterium Synechococcus strain WH 7803, and pure bovine erythrocyte SOD was studied. It was found that in all cases SOD activity increased with decreasing temperature within the temperature range assayed, in the Polar as well as the temperate plankton cells. This behavior of SOD is counterintuitive in terms of our experience when looking at enzyme activity or any other chemical reaction. We suggest a theoretical explanation for this apparently odd behavior. The advantage of such behavior is that the same amount of antioxidant will act better under low temperatures when reactive oxygen species (ROS) increase. Moreover, this protective process would act in vivo at a faster pace than the ex novo enzyme synthesis.  相似文献   

10.
The effects of calcium antagonists (amlodipine) and angiotensin II receptor antagonists (telmisartan) on lipid profile and oxidative markers were investigated in Algerian hypertensive patients. At the beginning and after 1 year of antihypertensive therapy, blood samples are collected for determination of biochemical parameters (glucose, cholesterol, triglycerides, urea, creatinine) and oxidative markers (malondialdehyde, carbonyl proteins, nitric oxide, superoxide anion, vitamin C, glutathione, catalase, superoxide dismutase). The results of this study indicate that telmisartan and amlodipine are effective antihypertensive agents in the treatment of hypertension because a significant reduction in systolic and diastolic blood pressure was observed in all hypertensive patients after 1 year of treatment. Our results show also that telmisartan and amlodipine treatments counteracted hypertension-dependent lipid abnormalities and oxidative stress. Telmisartan treatment appears to be more efficient than amlodipine treatment. In addition, telmisartan, which reversed all lipid and redox changes associated with hypertension, should be prescribed, especially in hypertensive patients with hypertriglyceridemia and with severe oxidative stress.  相似文献   

11.
The discovery of superoxide dismutase twenty years ago gave new meaning to work on erythrocuprein. This tribute to the achievement of Joe McCord and Irwin Fridovich is an account of experience of superoxide dismutase from old obscure copper protein of red blood cells to new exciting enzyme of oxygen free-radical metabolism, and an affirmation of the superoxide theory of oxygen toxicity.  相似文献   

12.
Superoxide dismutase (SOD) was chemically modified by covalent linkage of fatty acid chains to the accessible ε-amino groups of the enzyme. This acylation method gave rise to a different enzyme entity (Ac-SOD) as evidenced by different physicochemical properties such as octanol/water partition coefficient and isoelectric point (pI) as compared to SOD. Ac-SOD was incorporated in conventional and long-circulating liposomes (LCL) and characterized in terms of incorporation efficiency, protein to lipid ratio (Prot/Lip), enzymatic activity retention and zeta potential. The observation that Ac-SOD liposomes present enzymatic activity on their external surface indicates that these formulations can act independent of rate and extent of enzyme release as required in case of SOD liposomes. The decrease of superficial charge of liposomal formulations containing Ac-SOD, as compared to SOD liposomes, may be related to the negatively charged enzyme molecules localized on the liposome surface. The comparative characterization of Ac-SOD and SOD liposomal formulations evidenced that the two enzyme forms differ substantially regarding their intraliposomal location: SOD tends to be localized in the internal aqueous spaces, whereas Ac-SOD is expected to be localized in the lipid bilayers of the liposomes, partially buried into the outer surface and exposed to the external medium. These liposomal structures with surface-exposed SOD were designated as Ac-SOD enzymosomes. The properties of these enzymosomes may influence the therapeutic effect, as the release of the enzyme from extravasated vesicles is no longer a necessary requirement for achieving dismutating activity within the inflamed target site.  相似文献   

13.
The dynamics of superoxide anion (O2) in vivo remain to be clarified because no appropriate method exists to directly and continuously monitor and evaluate O2 in vivo. Here, we establish an in vivo method using a novel electrochemical O2 sensor. O2 generated is measured as a current and evaluated as a quantified partial value of electricity (Qpart), which is calculated by integration of the difference between the baseline and the actual reacted current. The accuracy and efficacy of this method were confirmed by dose-dependent O2 generation in xanthine–xanthine oxidase in vitro in phosphate-buffered saline and human blood. It was then applied to endotoxemic rats in vivo. O2 current began to increase 1 h after lipopolysaccharide, and Qpart increased significantly for 6 h in endotoxemic rats, in comparison to sham-treated rats. These values were attenuated by superoxide dismutase. The generation and attenuation of O2 were indirectly confirmed by plasma lipid peroxidation with malondialdehyde, endothelial injury with soluble intercellular adhesion molecule-1, and microcirculatory dysfunction. This is a novel method for measuring O2 in vivo and could be used to monitor and treat the pathophysiology caused by excessive O2 generation in animals and humans.  相似文献   

14.
Superoxide radicals in high concentrations were generated from alkaline H2O2 without using catalysts or irradiation. The dependence of the intensity and parameters of the superoxide radical EPR spectrum on pH, temperature, viscosity and H2O2 concentration were studied. The observed changes are explained on the base of matrix effects. The addition of superoxide dismutase to alkaline H2O2 led initially to a drop in the EPR spectrum intensity, followed by an increase in the concentration of superoxide radicals.  相似文献   

15.
Two immunoassays have been developed for the determination of rat erythrocyte dismutase (Cu,Zn-SOD). An enzyme-linked immunosorbent assay (ELISA) was very sensitive down to 4 ng/ml with a coefficient of variation (CV) of 18% while the single radial immunodiffusion assay (SRID) permitted an adequate detection level (5 μg/ml) with far better accuracy (CV = 4.2%). The latter was thus selected for the determination of Cu,Zn-SOD in the red blood cells of normal and copper-depleted rats. The average value of Cu,Zn-SOD in normal adult rat erythrocytes was 1142 ± 120 ng/mg hemoglobin. When compared to activity measurements, good correlation was obtained between enzyme content and enzyme activity (r = 0.803, P < .001). In an experimental copper deficiency followed by supplementation, good correlation was observed in the course of depletion (r = 0.848, P < .001) and repletion (r = 0.896, P < .001). During depletion, the loss of enzyme activity was mainly related to a loss of enzyme. However, enzymatically inactive protein was formed which would be activated when copper was added. These results indicate the importance of a combined use of Cu,Zn-SOD immunoquantitation and activity measurements to enable a better understanding of changes occuring with respect to enzyme activity.  相似文献   

16.
The loss of protection by human recombinant (hr) Cu,Zn-superoxide dismutase (SOD) at higher doses reported previously may have been due to the weak peroxidase activity of this enzyme. To test this possibility we studied the dose-response relationship of hrMn-SOD, which lacks peroxidase activity. Isolated, buffer perfused rabbit hearts were subjected to 1 h of global ischemia followed by 1 h of reperfusion, and the percent recovery of developed tension (relative to preischemic) was measured via a left ventricular balloon connected through a pressure transducer to a polygraph recorder. The coronary effluent was assayed for lactate dehydrogenase (LDH) release. While hrMn-SOD almost completely protected against loss of function and LDH release at 2 and 5 mg/L (p < 0.01), it exacerbated the damage at 50 mg/L concentration (p < 0.05 against controls), thus giving an even sharper bell-shaped curve than seen with the hrCu,Zn-SOD. Therefore we conclude that, first, while the hrMn-SOD protects the reperfused heart at lower doses, it may exacerbate the damage at higher doses. Second, that the lack of protection seen at higher doses of hr-Cu,Zn-SOD is unlikely to be due only to its peroxidase activity.  相似文献   

17.
The synthesis of Mn- and FeSODs in response to temperature changes was examined in strains of Escherichia coli with different mutations in sod and htpR genes. Growth at or shift to elevated temperatures induced FeSOD but not MnSOD. The induction of FeSOD by heat was inhibited by chloramphenicol and was independent of the heat shock (htpR-controlled) regulon. FeSOD was more stable at 42 degrees C than was MnSOD.  相似文献   

18.
19.
To investigate whether chronic alcohol consumption induces vascular injury via angiotensin II (Ang II) type 1 (AT1) receptor‐dependent superoxide generation, male transgenic mice with knockout of AT1 gene (AT1‐KO) and age‐matched wild‐type (WT) C57BL/6 mice were pair‐fed a modified Lieber‐DeCarli alcohol or isocaloric maltose dextrin control liquid diet for 2 months. Ethanol content (%, W/V) in the diet was 4.8 (34% of total calories) at initiation, and gradually increased up to 5.4 (38% of total calories). For some WT mice with and without alcohol treatment, superoxide dismutase mimetic (MnTMPyP) was given simultaneously by intraperitoneal injection at 5 mg/kg body weight daily for 2 months. At the end of studies, aortas were harvested for histopathological and immunohistochemical examination. Significant increases in the wall thickness and structural disarrangement of aorta were found in alcohol group, along with significant increases in aortic oxidative and/or nitrosative damage, expressions of NADPH oxidases (NOXs), inflammatory response, cell death and proliferation, and remodelling (fibrosis). However, these pathological changes were completely attenuated in alcohol‐treated AT1‐KO mice or in alcohol‐treated WT mice that were also simultaneously treated with MnTMPyP for 2 months. These results suggest that chronic alcohol consumption may activate NOX via Ang II/AT1 receptor, to generate superoxide and associated peroxynitrite that in turn causes aortic nitrosative damage, inflammation, cell death and proliferation, and remodelling. Therefore, blocking Ang II/AT1 system or scavenging superoxide may become a potential preventive and/therapeutic approach to alcoholic vascular damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号