首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is likely that several of the biological effects of selenium are due to its effects on selenoprotein activity. While the effects of the anti-oxidant selenoprotein glutathione peroxidase (GPx) on inhibiting HIV activation have been well documented, it is clear that increased expression of this enzyme can stimulate the replication and subsequent appearance of cytopathic effects associated with an acutely spreading HIV infection. The effects of GPx on both phases of the viral life cycle are likely mediated via its influence on signaling molecules that use reactive oxygen species, and similar influences on signaling pathways may account for some of the anti-cancer effects of selenium. Similarly, selenium can alter mutagenesis rates in both viral genomes and the DNA of mammalian cells exposed to carcinogens. Comparisons between the effects of selenium and selenoproteins on viral infections and carcinogenesis may yield new insights into the mechanisms of action of this element.  相似文献   

2.
We have previously reported the synthesis and characterization of two new classes of selenazolidine-4(R)-carboxylic acids (2-oxo and 2-methyl-SCAs) (OSCA and MSCA, respectively), as well as the "parent" compound, selenazolidine-4(R)-carboxylic acid (SCA, selenaproline). These compounds were designed as prodrugs of L-selenocysteine with potential application in cancer chemoprevention or other clinical uses. We will be exploring the chemopreventive activity of the new compounds in the well-established A/J mouse model of tobacco-induced lung carcinogenesis. The objectives of the present study were to investigate several fundamental biochemical endpoints after selenazolidine administration compared with other selenium-containing agents. Groups of mice were fed either AIN-76A diet alone or the diet supplemented with the following selenium compounds (ppm Se): sodium selenite (5), L-selenomethionine (3.75), L-selenocystine (15), Se-methyl-L-selenocysteine (3), MSCA (5, 10, or 15), OSCA (5, 10, or 15), or SCA (5, 10, or 15). After 28 days of supplementation, toxicity of the selenazolidines was not evident, as measured by outward appearance and behavior, body and organ weight changes, and histological evaluation of liver and lung tissue. Select treatment groups showed significant increases in selenium levels in blood and tissues. Increased activity of selenium-dependent glutathione peroxidase (GPx) in blood and liver illustrated that the selenazolidines provided a source of biologically-available selenium.  相似文献   

3.
Biological effects of a nano red elemental selenium.   总被引:27,自引:0,他引:27  
A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.  相似文献   

4.
Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.  相似文献   

5.
Prodrugs of L-selenocysteine have potential utility in cancer chemoprevention. This study reports the efficacy of three selenazolidine-4(R)-carboxylic acids, (2-unsubstituted, 2-oxo, and 2-methyl derivatives; SCA, OSCA, and MSCA, respectively) against tobacco-related lung tumorigenesis in a mouse model. Seven days after initiation of an AIN-76A diet supplemented with sodium selenite (5 ppm Se), L-selenomethionine (3.75 ppm Se), Se-methyl-L-selenocysteine (3 ppm Se), L-selenocystine (15 ppm Se), SCA (15 ppm Se), OSCA (15 ppm Se), or MSCA (15 ppm Se), mice received 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK; 10 micromol, i.p.). After an additional 16 weeks on the diets, two compounds, OSCA and selenocystine, significantly reduced lung adenoma multiplicity from 7.2 tumors per mouse in the NNK group to 4.5 and 4.6 tumors per mouse, respectively. Neither selenium concentration nor glutathione peroxidase activity in either RBCs or liver served as surrogate indicators of tumor reduction. Hepatic selenium levels were significantly elevated by all selenium-containing compounds except Se-methyl-L-selenocysteine and SCA; RBC selenium levels by all except sodium selenite and MSCA. With the exception of L-selenomethionine, RBC glutathione peroxidase activity was increased along with the elevated selenium levels. Hepatic glutathione peroxidase activity was elevated by all Se-compounds except SCA. The two compounds showing significant tumor reduction (OSCA and selenocystine) were the only two compounds that showed ubiquity of changes, elevating both selenium levels and GPx activity in both liver and RBC.  相似文献   

6.
7.
The cancer chemopreventive effect of selenium cannot be fully accounted for by the role of selenium as a component of the antioxidant enzyme glutathione peroxidase, which suggests that chemoprevention occurs by another mechanism. Several studies have shown that thiol oxidation and free radical generation occur as a consequence of selenium catalysis and toxicity. In the present study, we evaluated three different selenium compounds; selenite, selenocystamine, and selenomethionine to determine the relative importance of the prooxidative effects of these compounds with regard to their ability to induce apoptosis. The experimental results suggest that, in addition to supporting an increased activity of glutathione peroxidase, an antioxidant function that the three selenium compounds did with equal efficacy, catalytic selenite, and selenocystamine generated 8-hydroxydeoxyguanosine DNA adducts, induced apoptosis and were found to be cytotoxic in mouse keratinocytes. The noncatalytic selenomethionine was not cytotoxic, did not generate 8-hydroxydeoxyguanosine adducts and did not induce cellular apoptosis at any of the selenium concentrations studied. In keratinocytes, apoptosis may be initiated by superoxide (O2•−) and oxidative free radicals that are generated by selenite and selenocystamine, but not by selenomethionine.  相似文献   

8.
Antioxidant compounds play a vital role in human physiology. They prevent the oxidation of biomolecules by scavenging free radicals produced during physiochemical processes and/or as a result of several pathological states. A balance between the reactive oxygen species (free radicals) and antioxidants is essential for proper physiological conditions. Excessive free radicals cause oxidative stress which can lead to several human diseases. Therefore, synthesis of the effective antioxidants is crucial in managing the oxidative stress. Biotransformation has evolved as an effective technique for the production of structurally diverse molecules with a wide range of biological activities. This methodology surpasses the conventional chemical synthesis due to the fact that enzymes, being specific in nature, catalyze reactions affording products with excellent regio- and stereoselectivities. Structural transformation of various classes of compounds such as alkaloids, steroids, flavonoids, and terpenes has been carried out through this technique. Several bioactive molecules, especially those having antioxidant potential have also been synthesized by using different biotransformation techniques and enzymes. Hydroxylated, glycosylated, and acylated derivatives of phenols, flavonoids, cinnamates, and other molecules have proven abilities as potential antioxidants. A critical review of the biotransformation of these compounds into potent antioxidant metabolites is presented here.  相似文献   

9.
Selenium is an essential trace element for mammals. Through selenoproteins, this mineral participates in various biological processes such as antioxidant defence, thyroid hormone production, and immune responses. Some reports indicate that a human organism deficient in selenium may be prone to certain diseases. Adverse health effects following selenium overexposure, although very rare, have been found in animals and people. Contrary to selenium, arsenic and cadmium are regarded as toxic elements. Both are environmental and industrial pollutants, and exposure to excessive amounts of arsenic or cadmium can pose a threat to many people’s health, especially those living in polluted regions. Two other elements, vanadium and chromium(III) in trace amounts are believed to play essential physiological functions in mammals. This review summarizes recent studies on selenium interactions with arsenic and cadmium and selenium interactions with vanadium and chromium in mammals. Human studies have demonstrated that selenium may reduce arsenic accumulation in the organism and protect against arsenic-related skin lesions. Selenium was found to antagonise the prooxidant and genotoxic effects of arsenic in rodents and cell cultures. Also, studies on selenium effects against oxidative stress induced by cadmium in various animal tissues produced promising results. Reports suggest that selenium protection against toxicity of arsenic and cadmium is mediated via sequestration of these elements into biologically inert conjugates. Selenium-dependent antioxidant enzymes probably play a secondary role in arsenic and cadmium detoxification. So far, few studies have evaluated selenium effects on chromium(III) and vanadium actions in mammals. Still, they show that selenium may interact with these minerals. Taken together, the recent findings regarding selenium interaction with other elements extend our understanding of selenium biological functions and highlight selenium as a potential countermeasure against toxicity induced by arsenic and cadmium.  相似文献   

10.
Lead, an environmental toxin is known to induce a broad range of physiological and biochemical dysfunctions in humans through a number of mechanisms including the deactivation of antioxidants thus leading to generation of reactive oxygen species (ROS) and subsequent DNA damage. Selenium on the other hand has been proven to play an important role in the protection of cells from free radical damage and oxidative stress, though its effects are thought to be form and dose dependent. As the liver is the primary organ required for metabolite detoxification, HepG2 cells were chosen to assess the protective effects of various selenium compounds following exposure to the genotoxic agent lead nitrate. Initially DNA damage was quantified using a comet assay, gene expression patterns associated with DNA damage and signalling were also examined using PCR arrays and the biological pathways which were most significantly affected by selenium were identified.Interestingly, the organic type selenium compounds (selenium yeast and selenomethionine) conferred protection against lead induced DNA damage in HepG2 cells; this is evident by reduction in the quantity of DNA present in the comet tail of cells cultured in their presence with lead. This trend also followed through the gene expression changes noted in DNA damage pathways analysed. These results were in contrast with those of inorganic sodium selenite which promoted lead induced DNA damage evident in both the comet assay results and the gene expression analysis. Over all this study provided valuable insights into the effects which various selenium compounds had on the DNA damage and signalling pathway indicating the potential for using organic forms of selenium such as selenium enriched yeast to protect against DNA damaging agents.  相似文献   

11.
Prodrugs of L ‐selenocysteine have potential utility in cancer chemoprevention. This study reports the efficacy of three selenazolidine‐4(R)‐carboxylic acids, (2‐unsubstituted, 2‐oxo, and 2‐methyl derivatives; SCA, OSCA, and MSCA, respectively) against tobacco‐related lung tumorigenesis in a mouse model. Seven days after initiation of an AIN‐76A diet supplemented with sodium selenite (5 ppm Se), L ‐selenomethionine (3.75 ppm Se), Se‐methyl‐L ‐selenocysteine (3 ppm Se), L ‐selenocystine (15 ppm Se), SCA (15 ppm Se), OSCA (15 ppm Se), or MSCA (15 ppm Se), mice received 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone (NNK; 10 μmol, i.p.). After an additional 16 weeks on the diets, two compounds, OSCA and selenocystine, significantly reduced lung adenoma multiplicity from 7.2 tumors per mouse in the NNK group to 4.5 and 4.6 tumors per mouse, respectively. Neither selenium concentration nor glutathione peroxidase activity in either RBCs or liver served as surrogate indicators of tumor reduction. Hepatic selenium levels were significantly elevated by all selenium‐containing compounds except Se‐methyl‐L ‐selenocysteine and SCA; RBC selenium levels by all except sodium selenite and MSCA. With the exception of L ‐selenomethionine, RBC glutathione peroxidase activity was increased along with the elevated selenium levels. Hepatic glutathione peroxidase activity was elevated by all Se‐compounds except SCA. The two compounds showing significant tumor reduction (OSCA and selenocystine) were the only two compounds that showed ubiquity of changes, elevating both selenium levels and GPx activity in both liver and RBC. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 19:396‐405, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20105  相似文献   

12.
The biological activity of selenium is known to depend on its chemical form. In this study, eight forms of selenium that differed in oxidation state or degree of methylation were studied for their acute effects on the activities of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMet DC) and on the concentrations of the polyamines putrescine, spermidine, and spermine in the liver. The polyamine pathway was studied because it is involved in the control of cell growth and in the cell's response to trophic, carcinogenic, and toxic stimuli, activities that selenium has been reported to affect. Female Sprague Dawley rats were administered 12 mumol Se/kg body weight via intraperitoneal injection and were sacrificed six hours later. Injection of sodium selenate, sodium selenite, selenomethionine, Se-methylselenocysteine, selenobetaine, and selenobetaine methyl ester resulted in significant increases in liver selenium, whereas injection of dimethylselenoxide and trimethylselenonium chloride did not. ODC activity and AdoMet DC activity were induced by those selenium compounds that also increased liver selenium content, but the magnitude of enzyme induction by those compounds was not correlated with the hepatic concentration of total selenium determined fluorometrically. Furthermore, the induction of ODC activity by the various forms of selenium did not result in concomitant increases in putrescine, spermidine, and spermine except in the case of selenite. Given that alterations in the metabolism of selenium are induced when the level of tissue selenium is elevated and that the relative abundance of various selenometabolites can be affected by the point of entry of selenium into intermediary metabolism, these data suggest that the changes that were observed in enzyme activities and polyamine levels are likely to be associated with the accumulation of a specific metabolite of selenium. The relevance of these findings to elucidation of the biological activities attributable to various forms of selenium is under investigation.  相似文献   

13.
The metabolic relationships among the antioxidant nutrients selenium, sulfur, and vitamin E are particularly close. Selenium and vitamin E have long been known to spare one another in certain nutritional diseases of animals, and selenium has been considered to have a key antioxidant defense function as a component of glutathione peroxidase. However, the antioxidant role of glutathione peroxidase has been questioned and new proteins containing selenium have been identified: phospholipid hydroperoxide glutathione peroxidase, selenoprotein P, and iodothyronine deiodinase. Glutathione peroxidase activity independent of selenium resides in the glutathione S-transferases. Glutathione participates in both enzymatic and nonenzymatic antioxidant defense systems. Some low-molecular weight selenium compounds (e.g., ebselen) exhibit glutathione peroxidase-like action. Certain low molecular weight thiols decompose peroxides nonenzymatically (e.g., the ovothiols). Murine malaria appears to be a useful experimental model for investigating interrelationships of selenium and vitamin E. Vitamin E deficiency protects against the parasite, especially when the mice are concurrently fed peroxidizable fat such as fish or linseed oils. Selenium deficiency, on the other hand, has little or no protective effect against the parasite. Any practical utility of pro-oxidant diets in combating human malaria remains to be determined.  相似文献   

14.
An important class of organoselenium compounds‐α‐isoselenocyanato esters 4 hasbeen prepared by a reaction of α‐isocyano esters with elemental selenium powder. The reaction issimple, rapid and all the isoselenocyanates havebeen isolated as stable ones after chromatographic purification. These hitherto unreported classes of molecules would be useful building blocks for the preparation of variety of selenium containing peptidomimetics. In this study, the utility of the title molecules in the preparation of selenoureidopeptidomimetics 6, unsymmetrical selenoureas 8 and selenohydantoins 10 isdemonstrated. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Selenium is essential trace element, sulphur analogue with high chemical activity, component of some selenoproteins and enzymes: glutathione peroxidase and other peroxidases, blood and tissue proteins. As to their biological action mechanism selenium and its compounds are antioxidants. Selenium is active immunomodulator, much more potent anti-oxidant than vitamins E, C and A, beta-carotene, but much more toxic. It takes part in thyroxine conversion to triiodethyronine in thyroid hormone biosynthesis. As sperm antioxidant selenium protected its motility and fertility. Selenium is a serious factor of biological and antioxidant protection of vascular endothelium, of low-density lipoproteins, protection of DNA, chromosomes. As food component selenium is an exceptional agent of protection from atherosclerosis, coronary ischemic disease and cancer. Some hydrobionts, liver, kidney, meal, corn and garlic, onion, cabbage, broccoli are dietary products with high content of selenium.  相似文献   

16.
Selenium is an essential component of glutathione peroxidase, an enzyme which protects cells against peroxidation and controls concentrations of intracellular peroxides. Since selenium deficiency is clinically associated with an increased degree of atherosclerosis, the effects of selenium deficiency on prostacyclin (PGI2) and platelet activating factor (PAF) production by cultured human umbilical vein endothelial cells (HUVEC) were investigated. In selenium-deficient HUVEC, histamine-induced PGI2 synthesis was significantly decreased when compared to selenium-supplemented HUVEC; in contrast, histamine-induced PAF production was increased by selenium deficiency. Histamine-induced inositol trisphosphate and [Ca2+]i responses and the conversion of PGG2 and PGH2 to PGI2 were not altered by selenium deficiency. However, selenium deficiency decreased the conversion of exogenous arachidonate to PGI2 and markedly suppressed glutathione peroxidase activity. These results suggest that selenium deficiency, by decreasing glutathione peroxidase activity, makes HUVEC susceptible to peroxide-induced inhibition of the cyclooxygenase activity of PGH2 synthase, resulting in decreased PGI2 production. These changes may alter platelet function in vivo and thus play a role in the increased incidence of atherosclerosis reported in selenium-deficient individuals.  相似文献   

17.
Studies with 75Se have shown the existence of a rat plasma selenoprotein in addition to glutathione peroxidase. Because the function of the protein is not known, it has been referred to as selenoprotein P. A partially purified preparation was used to produce a monoclonal antibody to selenoprotein P. The antibody did not bind glutathione peroxidase as evidenced by its failure to remove glutathione peroxidase activity from rat plasma by immunoprecipitation. An immunoaffinity column was prepared with the monoclonal antibody, and selenoprotein P was purified 1270-fold from rat plasma in a two-step procedure. The purified selenoprotein P migrated in a single band with an Mr of 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography demonstrated that this band contained 75Se when the protein was purified from rats which had received 75SeO2-(3). A competitive radioimmunoassay for selenoprotein P was developed. The selenoprotein P concentration in plasma of selenium-replete rats was determined with this assay to be 51 +/- 3.7 micrograms/ml. It was less than 5 micrograms/ml in plasma from selenium-deficient rats. Injection of 50 micrograms of selenium into selenium-deficient rats caused an increase in selenoprotein P from less than 10% of control to 52% of control in 6 h. Plasma glutathione peroxidase activity increased only from 2.2 to 3.1% of control. These experiments demonstrate that rat plasma contains a selenoprotein distinct from glutathione peroxidase. The concentration of this selenoprotein is depressed in selenium deficiency, as is glutathione peroxidase activity, but selenoprotein P increases more rapidly when selenium is supplied than does glutathione peroxidase activity.  相似文献   

18.
Selenium (Se), a trace element, has evolved from its toxic properties to an essential element. Se was known a potent antioxidant through glutathione peroxidase (selenium being part of this molecule). Later, many other selenium-binding proteins were discovered and their functions were tried to be known with unsuccessful results in many cases. Se is known to be involved in carcinogenesis, immune function, male reproduction, cardiovascular diseases etc. The specific mechanism of the involvement of the element is still not known. Recent research with application of modern research tools viz. bioinformatics, cDNA microarray and transgenesis have revealed the mechanism of selenium involvement in various processes. This review highlights mysterious and useful roles of selenium in biological processes.  相似文献   

19.
The effects of reducing glutathione peroxidase activity in the lung by changing dietary selenium intake has been investigated. In animals that were exposed to room air, selenium effects were confined to glutathione peroxidase activity, whereas under conditions of oxidant stress (ozone) the decrease in glutathione peroxidase activity prevented the stimulation of the pentose phosphate cycle (assayed by measuring glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities) which has been reported to increase in response to oxidant stress. The suppression of glutathione peroxidase activity was found to depend on dietary selenium concentration. The physiological significance of this observation may be related to the process of injury and repair in the lung.  相似文献   

20.
Seaweeds are the primary producers of all aquatic ecosystems. Chemical constituents isolated from diverse classes of seaweeds exert a wide range of nutritional, functional and biological activities. Unique metabolites of seaweeds possess specific biological properties that make them potential ingredients of many industrial applications such as functional foods, pharmaceuticals and cosmeceuticals. Cosmeceuticals of natural origin are becoming more popular than synthetic cosmetics. Hence, the investigation of new seaweeds derived functional components, a different source of natural products, has proven to be a promising area of cosmeceutical studies. Brown seaweeds also produce a range of active components including unique secondary metabolites such as phlorotannins and many of which have specific biological activities that give possibilities for their economic utilization. Brown seaweeds derived active compounds have been shown various functional properties including, antioxidant, antiwrinkling, whitening, antiinflammatory and antiallergy. It is well-known that these kind of biological effects are closely associated with cosmeceutical preparations. This communication reviews the current knowledge on brown seaweeds derived metabolites with various biological activities and the potential use as cosmeceutical ingredients. It is hoped that the reviewed literature on multifunctional properties of brown seaweeds will improve access to the seaweed based natural products specially the ability to incorporate these functional properties in cosmeceutical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号