首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aim of this study was to determine whether biochemical changes occurred in the liver and kidney of arsenic (As) exposed pups during gestation and lactation, and investigate the potential beneficial role of antioxidants against arsenic exposure damage. Pregnant wistar rats received the following treatments as drinking water: (1) distilled water; (2) arsenic (50 mg/L); (3) antioxidants: zinc (20 mg/L) + vitamin C (2 g/L) + vitamin E (500 mg/L); (4) arsenic (50 mg/L) + antioxidants. As- intoxicated pups showed significant decreases in liver cholesterol and triglyceride concentration, whereas Aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activities were increased. Treatment with antioxidants returns these values to control ones. TBARS production in both organs and liver glutathione peroxidase (GPx) activity also increased whereas catalase (CAT) activity in both organs decreased in arsenic-exposed pups; the antioxidant administration only recover TBARS concentration to control values. Our findings suggest that administration of antioxidants during gestation and lactation could prevent some of the negative effects of arsenic.  相似文献   

2.
This study examined the effects of waterborne silver nanoparticles (AgNPs) on juvenile fish Piaractus mesopotamicus (“pacú”), and analyzed toxicological endpoints such as metal burdens, oxidative stress and genotoxicity in a short-term assay. Fish were individually exposed to 0 (control), 2.5, 10, and 25 μg AgNPs/L. After 24 h, silver accumulation was greater in the brain than the liver and gills at all silver concentrations. Fish exposed to higher AgNPs concentrations showed major alterations in oxidative stress markers. An increase in lipid peroxidation (LPO) levels was observed in the liver of fish exposed to 10 μg AgNPs/L with no changes in the antioxidant enzymes activities. In the case of the 25 μg AgNPs/L treatment, a hepatic activation of the enzymatic antioxidant defense occurred, and LPO levels resulted unaltered. On the other hand, the brain presented the highest LPO levels at both 10 and 25 μg AgNPs/L exposures. The AgNPs toxicity was also evidenced by the DNA damage in fish erythrocytes at higher concentrations. Summarizing, a short exposure to sublethal concentrations of AgNPs is enough to generate deleterious effects on fish, including DNA damage.  相似文献   

3.
Background: Cardiovascular disease (CVD) is a major cause of death worldwide, and arsenic (As) intake, mainly through drinking water, is a well-known risk factor for CVD as well as other health problems. Selenium (Se) is a known antagonist to As toxicity. Objective: We tested the potential of high-Se lentils from the Canadian prairies as a therapeutic food to alter the outcome of As-enhanced atherosclerosis. Materials and Methods: Male ApoE−/− mice exposed to a moderate level of As (200 ppb) in their drinking water, and control mice on tap water received one of three lentil diets: Se-deficient (0.009 mg/kg), Se-adequate (0.16 mg/kg) or Se-high (0.3 mg/kg). After 13 weeks, lesion formation in the aortic arch and sinus were assessed. Intralesional cellular composition, serum lipid levels and hepatic oxidative stress were assessed as well. Results: Arsenic-exacerbated plaque formation was reduced in the sinus and completely abolished in the aortic arch of mice on the Se-fortified lentil diet, whereas lesions were increased in As-exposed mice on both the Se-deficient and Se-adequate diets. Notably, Se deficiency contributed to proatherogenic composition of serum lipids in As-exposed mice as indicated by high-density lipoprotein:low-density lipoprotein. At least adequate Se status was crucial for counteracting As-induced oxidative stress. Conclusion: This study is the first to show the potential of high-Se lentils to protect against As-triggered atherosclerosis, and this invites further investigations in human populations at risk from As contamination of their drinking water.  相似文献   

4.
Oxidative stress a major cause of fluoride induced toxicity and mitochondrial impairment in common in experimental rats during chronic exposure of fluoride. Attempts have been made in the present experiment to diminish oxidative damage, combined therapy with (+)-catechin hydrate (an antioxidant) and sodium meta borate (chelator) were used. Fluoride intoxication in rats was performed by using 13 mg/kg NaF and both antioxidant CH and chelator SMB were used at a concentration of 8.98 μM/kg body weight. Mixture of CH and SMB in free or in PLGA nanocapsule encapsulated form were prepared. The efficacies of those formulations were tested in combating free radical mediated oxidative insult produced by sodium fluoride (NaF). The amalgamated therapy used in this experiment was shown to reduce fluoride levels in liver, brain and kidney from 9.5, 5.5, 6.3 μg/g to 4.6, 2, 2.6 μg/g, respectively. Our result indicated that the combined chelator and antioxidant therapy in nanocapsulated drug delivery system could provide a projection in combating fluoride induced mitochondrial impairment in rat model.  相似文献   

5.
In fishes, arsenic (As) is absorbed via the gills and is capable of causing disturbance to the antioxidant system. The objective of present study was to evaluate antioxidant responses after As exposure in gills of zebrafish (Danio rerio, Cyprinidae). Fish were exposed for 48 h to three concentration of As, including the highest As concentration allowed by current Brazilian legislation (10 μg As/L). A control group was exposed to tap water (pH 8.0; 26 °C; 7.20 mg O2/L). As exposure resulted in (1) an increase (p < 0.05) of glutathione (GSH) levels after exposure to 10 and 100 μg As/L, (2) an increase of the glutamate cysteine ligase (GCL) activity in the same concentrations (p < 0.05), (3) no significant differences in terms of glutathione reductase, glutathione-S-transferase and catalase activities; (4) a significantly lower (p < 0.05) oxygen consumption after exposure to 100 μg As/L; (4) no differences in terms of oxygen reactive species generation and lipid peroxidation content (p > 0,05). In the gills, only inorganic As was detected. Overall, it can be concluded that As affected the antioxidant responses increasing GCL activity and GSH levels, even at concentration considered safe by Brazilian legislation.  相似文献   

6.
Antioxidant vitamin C (VC) supplementation is of potential clinical benefit to individuals with skeletal muscle oxidative stress. However, there is a paucity of data reporting on the bioavailability of high-dose oral VC in human skeletal muscle. We aimed to establish the time course of accumulation of VC in skeletal muscle and plasma during high-dose VC supplementation in healthy individuals. Concurrently we investigated the effects of VC supplementation on expression levels of the key skeletal muscle VC transporter sodium-dependent vitamin C transporter 2 (SVCT2) and intramuscular redox and mitochondrial measures. Eight healthy males completed a randomized placebo-controlled, crossover trial involving supplementation with ascorbic acid (2×500 mg/day) over 42 days. Participants underwent muscle and blood sampling on days 0, 1, 7, and 42 during each treatment. VC supplementation significantly increased skeletal muscle VC concentration after 7 days, which was maintained at 42 days (VC 3.0±0.2 (mean±SEM) to 3.9±0.4 mg/100 g wet weight (ww) versus placebo 3.1±0.3 to 2.9±0.2 mg/100 g ww, p=0.001). Plasma VC increased after 1 day, which was maintained at 42 days (VC 61.0±6.1 to 111.5±10.4 µmol/L versus placebo 60.7±5.3 to 59.2±4.8 µmol/L, p<0.001). VC supplementation significantly increased skeletal muscle SVCT2 protein expression (main treatment effect p=0.006) but did not alter skeletal muscle redox measures or citrate synthase activity. A main finding of our study was that 7 days of high-dose VC supplementation was required to significantly increase skeletal muscle vitamin C concentration in healthy males. Our findings implicate regular high-dose vitamin C supplementation as a means to safely increase skeletal muscle vitamin C concentration without impairing intramuscular ascorbic acid transport, antioxidant concentrations, or citrate synthase activity.  相似文献   

7.
Iron status was studied in 137 welders exposed to a geometric mean (GM) air concentration of 214 μg/m3 (range 1–3230) of manganese (Mn), in 137 referents and in 34 former welders. The GM concentrations of S-ferritin were 119 (3–1498), 112 (9–1277) and 98 (12–989) μg/L (p = 0.24) in the three groups, respectively. Also the GM concentrations of S-hepcidin were not significantly different between the groups (8.4 μg/L (2.8–117); 6.6 μg/L (1.8–100); 6.5 μg/L (1.2–22)) (p = 0.22). Multiple linear regression analysis including all welders and referents showed an increase in the concentration of S-ferritin associated with having serum carbohydrate deficient transferrin (S-CDT) above the upper reference limit of ≥1.7%, indicating high alcohol consumption. Serum C-reactive protein was not associated with exposure as welders, but an association with S-ferritin was shown. The GM S-ferritin concentrations among all welders and referents with S-CDT  1.7% were 157 μg/L (95% CI 113–218) as compared to 104 μg/L (95% CI 94–116) (p = 0.02) in those with S-CDT < 1.7%. The GM concentrations of Mn in biological fluids were higher in the welders as compared to the referents, while S-Fe, S-Co and B-Co were statistically significantly lower. This could suggest a competitive inhibition from Mn on the uptake of Fe and Co. Increasing concentrations of S-CDT was associated with higher S-Mn, S-Fe and B-Co in the multiple linear regression analysis. The association between S-CDT and S-Fe remained when all subjects with high S-CDT (≥1.7%) were excluded, suggesting increased uptake of Fe even at lower alcohol consumption.  相似文献   

8.
Several peroxidovanadium(V) complexes have been shown as a potent anticancer agents. The aim of this study was to investigate the interaction of monoperoxidovanadium(V) complex Pr4N[VO(O2)(ox)(phen)], (Vphen), [phen = 1,10-phenantroline, ox = oxalate(2?) and Pr4N = tetra(n-propyl)ammonium(1+)] with DNA. UV–Vis spectrophotometry and the alkaline single-cell gel electrophoresis (SCGE, the comet assay) were used to examine the possibility of the vanadium(V) complex to induce changes in DNA. The interaction of Vphen with calf thymus DNA resulted in absorption hyperchromicity in DNA spectrum and shift of the absorption band of DNA to longer wavelengths for the [complex]/[DNA] concentration ratio equals to 4 and after 60 min of incubation. The rise in DNA absorption (by 34%) and bathochromic shift (Δλmax = 6 nm) are indicative of the interaction between DNA and the complex molecules. DNA strand breaks in cellular DNA were investigated using the comet assay. The human lymphocytes were exposed to various concentrations of Vphen for 30 min. The results revealed that Vphen contributed to the DNA damage expressed as DNA strand breaks in concentration dependent manner. The used concentrations of Vphen (ranging from 0.1 to 100 μmol/L) caused higher DNA damage in lymphocytes compared to untreated cells (from 1.2 times for 0.1 μmol/L to 1.8 times for 100 μmol/L). Vphen was screened for its potential antitumor activity towards murine leukemia cell line L1210. Vphen exhibited significant antiproliferative activity depending on its concentration and time of exposure. The IC50 values were 0.247 μg/mL (0.45 μmol/L) for 24 h, 0.671 μg/mL (1.21 μmol/L) for 48 h and 0.627 μg/mL (1.13 μmol/L) for 72 h.  相似文献   

9.
Dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) is one of the most potent and widespread environmental pollutants. Although PCB126-induced toxicity is related to the aryl hydrocarbon receptor pathway, there is still no study that has constructed an in vivo visual model to clarify the role of the Nrf2/ARE signaling pathway in the oxidative stress mechanism of PCB126-induced toxicity. In the present study, an in vivo zebrafish model of nrf2a fused to enhanced green fluorescent protein (nrf2a-eGFP) was constructed. The zebrafish embryos microinjected with nrf2a-eGFP (72 h postfertilization) were exposed to various concentrations of PCB126 (0, 25, 50, 100, 200 μg/L) or 30 mM N-acetylcysteine (NAC)+200 μg/L PCB126. After 72 h exposure, PCB126 significantly increased the malformation rates and induced eGFP expression in a dose-dependent manner in several zebrafish tissue types. The distribution of eGFP fluorescence coincided with developmental deformity sites. NAC pretreatment effectively counteracted PCB126-induced developmental toxicity including heart rate, pericardial edema, and body length. The highest PCB126 dose, 200 μg/L, produced marked apoptosis in the eye, gill, and trunk detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. At 48 and 72 h exposure, 200 μg/L PCB126 affected glutathione metabolism as evidenced by decreased glutathione and increased glutathione disulfide concentrations, indicative of oxidative stress. These effects were also counteracted by NAC pretreatment. Furthermore, the Nrf2-regulated genes gclc, gpx, gstp1, and hmox1 were significantly induced at 24, 48, and 72 h at the highest PCB126 exposures but not in the NAC-pretreated group. In addition, a significant increase in ROS generation was detected in zebrafish larvae at 72 h PCB126 exposure, which might offer a link for future mechanistic studies. Collectively, these data suggest that PCB126-induced developmental toxicity and apoptosis in the nrf2a-eGFP-injected zebrafish model are due to oxidative stress mediated by disruption to glutathione metabolism and changes in Nrf2-regulated gene expression.  相似文献   

10.
Cancer cachexia is a multifactorial syndrome characterised by progressive weight loss, frequently accompanied by anorexia, sarcopenia, and chronic systemic inflammation. The white adipose tissue is markedly affected by cachexia and contributes to this syndrome throught the secretion of pro-inflammatory factors which reach the adjacent tissues and the circulation. A nonpharmacologic intervention that may attenuate cancer cachexia is chronic physical activity, but the effect of resistance training upon adipose tissue inflammation in cachexia has never been examined. For that purpose we designed a protocol in which animals were randomly assigned to a control group (CT, n = 7), a Tumour bearing group (TB, n = 7), a Resistance Trained group (RT, n = 7) and a Resistance Trained tumour bearing group (RTTB, n = 7). Trained rats climbed a vertical ladder with an extra load attached to the tail, representing 75–90% of total body mass, 3 times per week, for 8 weeks. In the 6th week of resistance training, tumour cells (3 × 107 Walker 256 carcinosarcoma) were inoculated in the tumour groups. Body, adipose tissue, muscle and tumour mass was determined, as well a blood biochemical parameters, and the hormone and cytokine profile assessed. The glycogen content of the liver and muscle was measured. IL-10, IL-6 and TNF-α protein expression was evaluated in the mesenteric adipose tissue (MEAT) examined. Resistance training increased by 9% body weight gain in RTTB (final weight 310.8 ± 9.8 g), when compared with TB (final weight 288.3 ± 4.9 g). LDL-c levels were decreased in RTTB (0.28 ± 0.9 mmol/L) by 43% when compared with TB (0.57 ± 0.1 mmol/L). HDL-c levels were increased in RTTB (1.31 ± 0.12 mmol/L) by 15% in regard to CT (1.13 ± 0.7 mmol/L) and 22% as compared with TB (1.07 ± 0.07 mmol/L). RTTB testosterone levels (577 ± 131 ng/mL) were 55% higher when compared with CT (254 ± 41.3 ng/mL) and 63% higher when compared with TB (221 ± 23.1 ng/mL). Adiponectin levels were augmented in RT (23 μg/mL) by 43% when compared with TB (11 μg/mL). Protein expression of IL-6 was increased 38% in TB MEAT (5.95 pg/μg), as compared with CT (3.64 pg/μg) and 50% compared with RTTB (2.91 pg/μg). Similar results with respect to TNF-α TB (7.18 pg/μg) were observed: 39% and 46%, higher protein expression in comparison with CT (4.63 pg/μg) and RTTB (3.8 pg/μg), respectively. IL-10 protein expression was found to be increased in TB (4.4 pg/μg) and RTTB (3.2 pg/μg) 50% and 47%, respectively, in comparison with CT (1.2 pu/μg). The IL-10/TNF-α ratio was higher in RTTB in relation to all others experimental groups. The results show a robust effect of resistance exercise training in preventing important symptoms of cancer cachexia, thus strongly suggesting it may appear as an alternative to endurance exercise as a non-pharmacological therapy in the management of this syndrome.  相似文献   

11.
The aim of this study was to establish an effective mouse model of oral cancer and to use this model to identify potential markers of oral tumor progression. C57BL/6JNarl mice were treated with arecoline, 4-nitroquinoline 1-oxide (4-NQO), or both arecoline and 4-NQO in high and low doses for 8 weeks to induce oral tumor. The induced oral lesions were observed for 20 weeks to assess the efficiency of cancer induction and survival rate of the mice. In addition, two target proteins that are frequently overexpressed during tongue cancer tumorigenesis, αB-crystallin and Hsp27, were examined by immunohistochemical analysis. In mice exposed to 4-NQO (200 μg/mL) and arecoline (500 μg/mL), the tongue lesions showed evidence of hyperplasia, papilloma, dysplasia, and carcinoma, and the lesions were pathologically similar to those lesions in human oral cancer. The tongue tumor incidence rate was 100% in mice exposed to concomitant 4-NQO (200 μg/mL) and arecoline (500 μg/mL) treatment, 57% in mice exposed to 4-NQO only, and 0% in mice exposed to arecoline only. Immunohistochemical analysis demonstrated that, consistent with human studies, αB-crystallin and Hsp27 were upregulated in murine oral tumors. In conclusion, we have established a powerful animal model that enables the study of the promoting effects of arecoline on tongue tumorigenesis. Data subsequently attained from this mouse model support a role for αB-crystallin and Hsp27 as clinical markers for tumor progression.  相似文献   

12.
The present paper presents results of the study in removal of iron, arsenic and total coliform from drinking water using single-pass constructed soil filter (CSF). Results indicated that arsenic levels ranged from 0.5 to less than 10 μg l?1 levels; iron from 5 to less than 0.3 mg l?1 and coliform from 10?5 to less than 5 CFU/100 ml. The results revealed very high removal efficiency, i.e., over 99% and water quality as per WHO standard.  相似文献   

13.
IntroductionExposure to lead and cadmium is a public health problem due to the broad exposure to these toxic substances among the general population. The objective of this study is to determine blood lead and cadmium concentrations in a working population drawn from six university hospitals in Madrid, Getafe, Cartagena, Santiago de Compostela, Santander and Palma de Mallorca (Spain) and to identify associated factors.Materials and methods951 individuals participated in the study and were administered the standardized PESA® questionnaire regarding exposure to lead and cadmium. The blood lead and cadmium concentrations were measured by electrothermal atomization atomic absorption spectrometry with Zeeman background correction in Perkin-Elmer spectrometers, guaranteeing the transferability of the results.ResultsThe median overall blood lead concentration was: 1.6 μg/dL (IQR: 0.9–2.7) and that of cadmium was: 0.21 μg/L (IQR: 0.10–0.50). There were significant differences in lead levels between men (2 μg/dL) and women (1.5 μg/dL), postmenopausal (2.6 μg/dL) and premenopausal women (1.1 μg/dL), and between participants who cooked in earthenware (2.1 μg/dL) and those who did not (1.5 μg/dL). The median of cadmium in women (0.24 μg/L) was higher than in men (0.11 μg/L) and was also higher in subjects who smoked (0.70 μg/L) than in non-smokers (0.13 μg/L).ConclusionsA reduction in blood lead and cadmium levels was observed with respect to previous studies carried out in Spain. Nevertheless, the results suggest there are certain factors which increase risk such as age, gender, menopause, age of housing, cooking in lead-glazed earthenware and exposure to cigarette smoke.  相似文献   

14.
Deep tissue pressure ulcers, a serious clinical challenge originating in the muscle layer, are hardly detectable at the beginning. The challenge apparently occurs in aged subjects more frequently. As the ulcer propagates to the skin surface, it becomes very difficult to manage and can lead to fatal complications. Preventive measures are thus highly desirable. Although the complex pathological mechanisms have not been fully understood, prolonged and excessive physical challenges and oxidative stress are believed to be involved in the ulcer development. Previous reports have demonstrated that oxidative stress could compromise the mechanical properties of muscle cells, making them easier to be damaged when physical challenges are introduced. In this study, we used senescence accelerated (SAMP8) mice and its control breed (SAMR1) to examine the protective effects of intermittent vibration on aged and control muscle tissues during prolonged epidermal compression under 100 mmHg for 6 h. Results showed that an application of 35 Hz, 0.25 g intermittent vibration during compression decreased the compression-induced muscle breakdown in SAMP8 mice, as indicated histologically in terms of number of interstitial nuclei. The fact that no significant difference in muscle damage could be established in the corresponding groups in SAMR1 mice suggests that SAMR1 mice could better accommodate the compression insult than SAMP8 mice. Compression-induced oxidative damage was successfully curbed using intermittent vibration in SAMP8 mice, as indicated by 8-OHdG. A possible explanation is that the anti-oxidative defense could be maintained with intermittent vibration during compression. This was supported by the expression level of PGC-1-alpha, catalase, Gpx-1 and SOD1. Our data suggested intermittent vibration could serve as a preventive measure for deep tissue ulcer, particularly in aged subjects.  相似文献   

15.
Dyslipidemia in patients with glycogen storage disease types Ia (GSD Ia) and III (GSD III) does not lead to premature atherosclerosis. The aim of this study was to investigate the association among serum copper (Cu), zinc (Zn), iron (Fe), and selenium (Se) concentrations, and their carrier proteins: ceruloplasmin, albumin, and related antioxidant enzyme activities [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PON), and arylesterase (ARYL)] in 20 GSD Ia and 14 III patients compared to age and sex matched 20 healthy subjects. Erythrocyte oxidative stress was measured by erythrocyte thiobarbituric acid reactive substances (eTBARSs). Hypertriglyceridemia [333 (36–890) mg/dL] in GSD Ia and hypercholesterolemia with elevated LDL-cholesterol [188 (91–313) mg/dL] and decreased HDL-cholesterol [32(23–58) mg/dL] levels in GSD III were found. Serum Cu, Fe, and Zn showed no significant differences between groups. However, Se 60 (54–94), 81 (57–127) μg/L, ceruloplasmin 21 (10–90), 27 (23–65) μg/L, and albumin 2.4 (1.7–5.1), 2.8 (1.8–4.06) g/dL levels were decreased in GSD Ia and III groups, respectively, in comparison with the controls [Se 110 (60–136) μg/L, ceruloplasmin 72 (32–94) μg/L, and albumin 4.4 (4–4.8) g/dL)]. In spite of high oxidative stress in erythrocyte detected by elevated eTBARS/Hb levels in GSD group [674.8 (454.6–948.2) for GSD Ia, 636.3 (460.9–842.1) for GSD III, and 525.6 (449.2–612.6)], the activities of CAT, SOD, ARYL, and PON in GSD patients were not different from the controls. GPx activity was decreased in GSD Ia [3.7 (1.8–7.1) U/mL] and GSD III [4.2 (2.2–8.6) U/mL] compared with healthy controls [7.1 (2.9–16.2) U/mL].In conclusion, this study supplied the data for trace elements, their carrier, and antioxidative enzymes in the patients with GSD Ia and III. The trace elements and anti-oxidative enzyme levels in GSD patients failed to explain the atherosclerotic escape phenomenon reported in these patients.  相似文献   

16.
Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH +) or without (FH ?) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH + myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH + myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH + myotubes. Surprisingly, mtDNA content was higher in FH + myotubes. Oxidative stress level was not different between FH + and FH ? groups. Reactive oxygen species content was lower in FH + myotubes when differentiated in high glucose/insulin (25 mM/150 pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH + myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.  相似文献   

17.
Studies show that decreased antioxidant system is related to cognitive decline. Thus we aimed to measure selenium (Se) status in Alzheimer's disease (AD) and mild cognitive impairment (MCI) elderly and compared them with a control group (CG). 27 AD, 17 MCI and 28 control elderly were evaluated. Se concentration was determined in plasma and erythrocyte by using hydride generation atomic absorption spectroscopy. Erythrocyte Se concentration in AD group was lower than CG (43.73 ± 23.02 μg/L and 79.15 ± 46.37 μg/L; p = 0.001), but not statistically different from MCI group (63.97 ± 18.26 μg/L; p = 0.156). AD group exhibited the lowest plasma Se level (34.49 ± 19.94 μg/L) when compared to MCI (61.36 ± 16.08 μg/L; p = 0.000) and to CG (50.99 ± 21.06 μg/L; p = 0.010). It is observed that erythrocyte Se decreases as cognition function does. Since erythrocyte reflects longer-term nutritional status, the data point to the importance of the relation between Se exposure and cognitive function. Our findings suggest that the deficiency of Se may contribute to cognitive decline among aging people.  相似文献   

18.
To improve the knowledge of the underlying mechanisms implying in air pollution Particulate Matter (PM)-induced lung toxicity in humans, we were interested in the sequential occurrence of molecular abnormalities from TP53-RB gene signaling pathway activation in the L132 target human lung epithelial cell model. The most toxicologically relevant physical and chemical characteristics of air pollution PM2.5 collected in Dunkerque, a French highly-industrialized sea-side city, were determined. L132 cells were exposed during 24, 48 and 72 h to Dunkerque City's PM2.5 (i.e. Lethal Concentration (LC)10 = 18.84 μg PM/mL or 5.02 μg PM/cm2; LC50 = 75.36 μg PM/mL or 20.10 μg PM/cm2), TiO2 and desorbed PM (i.e. dPM; EqLC10 = 15.42 μg/mL or 4.11 μg PM/cm2; EqLC50 = 61.71 μg/mL or 16.46 μg PM/cm2), benzene (7 μM) or Benzo[a]Pyrene (B[a]P; 1 μM). Dunkerque City's PM2.5 altered the gene expression and/or the protein concentration of several key cell cycle controllers from TP53-RB gene signaling pathway (i.e. P53; BCL2; P21; cyclin D1, cyclin-dependent kinase 1; retinoblastoma protein) in L132 cells, thereby leading to the occurrence of cell proliferation and apoptosis together. The activation of the critical cell cycle controllers under study might be related to PM-induced oxidative stress, through the possible involvement of covalent metals in redox systems, the metabolic activation of organic chemicals by enzyme-catalyzed reactions, and phagocytosis. Taken together, these results might ask the critical question whether there is a balance or, in contrast, rather an imbalance between the cell proliferation and the apoptosis occurring in PM-exposed L132 cells, with possible consequences in term of PM-induced lung tumorgenesis.  相似文献   

19.
In this study we determined the concentration of 9 trace elements (As, Cd, Cu, Hg, Mn, Mo, Pb, Se and Zn) in whole blood of children (n = 100, 64 girls, 36 boys and median age: 36 months) using inductively coupled plasma mass spectrometry (ICP-MS). The proportion of children potentially deficient in essential elements or poisoned by toxic elements was evaluated. The aging effects on the concentration of these elements were also investigated. The median values were 3.17 μg/L (As), 0.15 μg/L (Cd), 1.1 mg/L (Cu), 2.1 μg/L (Hg), 10.4 μg/L (Mn), 17.7 μg/L (Mo), 8.7 μg/dL (Pb), 10.7 μg/L (Se) and 5.0 mg/L (Zn). The concentration of many elements (As, Cd, Hg, Mn, Pb and Zn) showed significant age variations but not sex influence. Regarding levels of the essential elements (Cu, Mn, Mo, Se and Zn), B-Cu, B-Mn, B-Se and B-Zn were in the normal range, whereas exceeded levels were observed for B-Mo. None of these children was deficient in essential elements. Except B-Cd, all toxic elements showed exceeded blood levels. The proportion of children potentially poisoned by toxic elements varies from 10% (n = 10) to 95% (n = 95) and depends on toxic element: 95% for As, 10% for Hg and 35% for Pb. The main health concerns emerging from this study are the high As, Hg and Pb exposures of the Kinshasan children requiring further documentation, corrective actions and the implementation of appropriate regulations.  相似文献   

20.
In the present in vitro study, a comet assay was used to determine whether 1.8-GHz radiofrequency radiation (RFR, SAR of 2 W/kg) can influence DNA repair in human B-cell lymphoblastoid cells exposed to doxorubicin (DOX) at the doses of 0 μg/ml, 0.05 μg/ml, 0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml. The combinative exposures to RFR with DOX were divided into five categories. DNA damage was detected at 0 h, 6 h, 12 h, 18 h and 24 h after exposure to DOX via the comet assay, and the percent of DNA in the tail (% tail DNA) served as the indicator of DNA damage. The results demonstrated that (1) RFR could not directly induce DNA damage of human B-cell lymphoblastoid cells; (2) DOX could significantly induce DNA damage of human B-cell lymphoblastoid cells with the dose–effect relationship, and there were special repair characteristics of DNA damage induced by DOX; (3) E–E–E type (exposure to RFR for 2 h, then simultaneous exposure to RFR and DOX, and exposure to RFR for 6 h, 12 h, 18 h and 24 h after exposure to DOX) combinative exposure could obviously influence DNA repair at 6 h and 12 h after exposure to DOX for four DOX doses (0.075 μg/ml, 0.10 μg/ml, 0.15 μg/ml and 0.20 μg/ml) in human B-cell lymphoblastoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号