首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The overall control of the quality of botanical drugs starts from the botanical raw material, continues through preparation of the botanical drug substance and culminates with the botanical drug product. Chromatographic and spectroscopic fingerprinting has been widely used as a tool for the quality control of herbal/botanical medicines. However, discussions are still on-going on whether a single technique provides adequate information to control the quality of botanical drugs. In this study, high performance liquid chromatography (HPLC), ultra performance liquid chromatography (UPLC), capillary electrophoresis (CE) and near infrared spectroscopy (NIR) were used to generate fingerprints of different plant parts of Panax notoginseng. The power of these chromatographic and spectroscopic techniques to evaluate the identity of botanical raw materials were further compared and investigated in light of the capability to distinguishing different parts of Panax notoginseng. Principal component analysis (PCA) and clustering results showed that samples were classified better when UPLC- and HPLC-based fingerprints were employed, which suggested that UPLC- and HPLC-based fingerprinting are superior to CE- and NIR-based fingerprinting. The UPLC- and HPLC- based fingerprinting with PCA were able to correctly distinguish between samples sourced from rhizomes and main root. Using chemometrics and its ability to distinguish between different plant parts could be a powerful tool to help assure the identity and quality of the botanical raw materials and to support the safety and efficacy of the botanical drug products.  相似文献   

3.
The health benefits of herbs and herbal products are gaining more attention in southeast Asia. The World Health Organization (WHO) has been supporting countries to promote application of traditional medicines so that this valuable resource is utilized safely and effectively. In Thailand, many traditional herbal recipes have been established since ancient times. Since then, they have been carefully modified, based on the wisdom of traditional Thai medicine practitioners. For this study, a traditional Thai antihypertensive herbal recipe (TTAH) was selected and studied in detail. According to WHO guidelines, both analysis of a sizeable chemical constituent, and formulation data of a product, are a requirement to support a clinical trial for an herbal recipe. Therefore, high-performance liquid chromatography–mass spectrometry (LC–MS) was used to investigate the chemical fingerprints, chemical constituents, and putative active ingredients of the TTAH. Eight chemical fingerprints were established. Metabolic profiling of 10 possible compounds was also identified and all were shown to be active pharmaceutical compounds. An attempt was also made to prepare a suitable formulation of the TTAH, to standardize the amount of active ingredients per dose, and to improve patient compliance. All evaluated parameters guided us to prepare the TTAH as a capsule. This informative data can be included in part of the chemistry–manufacturing–control guidance prior to phase 1/2 clinical trials.  相似文献   

4.

Introduction

Herbal medicines play an important role globally in the health care sector and in industrialised countries they are often considered as an alternative to mono‐substance medicines. Current quality and authentication assessment methods rely mainly on morphology and analytical phytochemistry‐based methods detailed in pharmacopoeias. Herbal products however are often highly processed with numerous ingredients, and even if these analytical methods are accurate for quality control of specific lead or marker compounds, they are of limited suitability for the authentication of biological ingredients.

Objective

To review the benefits and limitations of DNA barcoding and metabarcoding in complementing current herbal product authentication.

Method

Recent literature relating to DNA based authentication of medicinal plants, herbal medicines and products are summarised to provide a basic understanding of how DNA barcoding and metabarcoding can be applied to this field.

Results

Different methods of quality control and authentication have varying resolution and usefulness along the value chain of these products. DNA barcoding can be used for authenticating products based on single herbal ingredients and DNA metabarcoding for assessment of species diversity in processed products, and both methods should be used in combination with appropriate hyphenated chemical methods for quality control.

Conclusions

DNA barcoding and metabarcoding have potential in the context of quality control of both well and poorly regulated supply systems. Standardisation of protocols for DNA barcoding and DNA sequence‐based identification are necessary before DNA‐based biological methods can be implemented as routine analytical approaches and approved by the competent authorities for use in regulated procedures. © 2017 The Authors. Phytochemical Analysis Published by John Wiley & Sons Ltd.  相似文献   

5.
Separation methods for pharmacologically active xanthones   总被引:1,自引:0,他引:1  
Xanthones, as a kind of polyphenolic natural products with many strong bioactivities, are attractive for separation scientists due to the similarity and diversity of their structures resulting in difficult separation by chromatographic methods. High performance liquid chromatography (HPLC) and thin layer chromatography (TLC) are traditional methods to separate xanthones. Recently, capillary electrophoresis (CE), as a micro-column technique driven by electroosmotic flow (EOF), with its high efficiency and high-speed separation, has been employed to separate xanthones and determine their physicochemical properties such as binding constants with cyclodextrin (CD) and ionization constants. Since xanthones have been used in clinic treatment, the development of chromatographic and CE methods for the separation and determination of xanthones plays an essential role in the quality control of some herbal medicines containing xanthones. This article reviewed the separation of xanthones by HPLC, TLC and CE, citing 72 literatures. This review focused on the CE separation for xanthones due to its unique advantages compared to chromatographic methods. The comparison of separation selectivity of different CE modes including capillary zone electrophoresis (CZE), micellar electrokinetic chromatography (MEKC), microemulsion electrokinetic capillary chromatography (MEEKC) and capillary electrochromatography (CEC) was discussed. Compared with traditional chromatographic methods such as HPLC and TLC, CE has higher separation efficiency, faster separation, lower cost and more flexible modes. However, because of low sensitivity of UV detector and low contents of xanthones in herbal medicines, CE methods have seldom been applied to the analysis of real samples although CE showed great potential for xanthone separation. The determination of xanthones in herbal medicines has been often achieved by HPLC. Hence, how to enhance CE detection sensitivity for real sample analysis, e.g. by on-line preconcentration and CE-MS, would be a key to achieve the quantitation of xanthones.  相似文献   

6.
Sutherlandia frutescens (Fabaceae) commonly known as cancer-bush, is a well-known traditional phytomedicine in South Africa used to treat a range of ailments. There is limited information available on the phytochemistry and chemical variation within and between the S. frutescens and Sutherlandia microphylla species complex. This paper aims to elucidate the chemical variation of phytoconstituents (other than the non-protein amino acids) between the two species S. frutescens and S. microphylla and also between the wild and cultivated varieties of S. frutescens. An UPLC–MS analysis in tandem with chemometric analysis has been performed to assess the metabolite content of aerial plant parts obtained from different populations. Principal component analysis (PCA) was performed to observe groupings and trends in the data matrix. An orthogonal partial least square discriminant analysis (OPLS-DA) was performed which resulted in clear groups between the two taxa. Several flavonoid and triterpenoid glycoside derivatives contribute to the quantitative chemotypic variation within and between the species as observed. The identification of these compounds using advanced chromatographic techniques (UPLC–MS) and chemometric analysis leads to a better understanding of the phytochemical variation of Sutherlandia which can aid in quality control of raw material, phytomedicines and commercial herbal products.  相似文献   

7.
A widely used herbal medicine, Ixeris sonchifolia (Bge.) Hance Injectable (ISHI) was investigated for quality consistency. Characteristic fingerprints of 23 batches of the ISHI samples were generated at five wavelengths and evaluated by the systematic quantitative fingerprint method (SQFM) as well as simultaneous analysis of the content of seven marker compounds. Chemometric methods, i.e., support vector machine (SVM) and principal component analysis (PCA) were performed to assist in fingerprint evaluation of the ISHI samples. Qualitative classification of the ISHI samples by SVM was consistent with PCA, and in agreement with the quantitative evaluation by SQFM. In addition, the antioxidant activities of the ISHI samples were determined by both the off-line and on-line DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. A fingerprint–efficacy relationship linking the chemical components and in vitro antioxidant activity was established and validated using the partial least squares (PLS) and orthogonal projection to latent structures (OPLS) models; and the online DPPH assay further revealed those components that had position contribution to the total antioxidant activity. Therefore, the combined use of the chemometric methods, quantitative fingerprint evaluation by SQFM, and multiple marker compound analysis in conjunction with the assay of antioxidant activity provides a powerful and holistic approach to evaluate quality consistency of herbal medicines and their preparations.  相似文献   

8.
Chinese herbal medicine is gaining increasing popularity worldwide for health promotion and adjuvant therapy. Thus, selective and efficient analytical methods are required not only for quality assurance but also for authentication of the plant material. Applications of both chromatographic and electrophoretic techniques to the analysis of medicinal plants and Chinese traditional medicine preparations over the last 3 years are outlined in this review. The role of chemical fingerprinting is highlighted and a brief survey of determination of toxic components, natural and synthetic adulterants is also included. Moreover, different sample pretreatment and extraction methods are discussed.  相似文献   

9.
Chinese patent medicines (CPM), generally prepared from several traditional Chinese medicines (TCMs) in accordance with specific process, are the typical delivery form of TCMs in Asia. To date, quality control of CPMs has typically focused on the evaluation of the final products using fingerprint technique and multi-components quantification, but rarely on monitoring the whole preparation process, which was considered to be more important to ensure the quality of CPMs. In this study, a novel and effective strategy labeling “retracing” way based on HPLC fingerprint and chemometric analysis was proposed with Shenkang injection (SKI) serving as an example to achieve the quality control of the whole preparation process. The chemical fingerprints were established initially and then analyzed by similarity, principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) to evaluate the quality and to explore discriminatory components. As a result, the holistic inconsistencies of ninety-three batches of SKIs were identified and five discriminatory components including emodic acid, gallic acid, caffeic acid, chrysophanol-O-glucoside, and p-coumaroyl-O-galloyl-glucose were labeled as the representative targets to explain the retracing strategy. Through analysis of the targets variation in the corresponding semi-products (ninety-three batches), intermediates (thirty-three batches), and the raw materials, successively, the origins of the discriminatory components were determined and some crucial influencing factors were proposed including the raw materials, the coextraction temperature, the sterilizing conditions, and so on. Meanwhile, a reference fingerprint was established and subsequently applied to the guidance of manufacturing. It was suggested that the production process should be standardized by taking the concentration of the discriminatory components as the diagnostic marker to ensure the stable and consistent quality for multi-batches of products. It is believed that the effective and practical strategy would play a critical role in the guidance of manufacturing and help improve the safety of the final products.  相似文献   

10.
《Biotechnology advances》2019,37(8):107450
Conventional Sanger Sequencing for authentication of herbal products is difficult since they are mixture of herbs with fragmented DNA. Next-generation sequencing (NGS) techniques give massive parallelization of sequencing reaction to generate multiple reads with various read length, thus different components in herbal products with fragmented DNA can be identified. NGS is especially suitable for animal derived products with the lack of effective markers for chemical analysis. Currently, second generation sequencing such as Illumina Sequencing and Ion Torrent Sequencing, and third generation sequencing such as PacBio Sequencing and Nanopore Sequencing are representative NGS platforms. The constructed library is first sequenced to obtain a pool of genomic data, followed by bioinformatics analysis and comparison with DNA database. NGS also facilitates the determination of contaminant which is essential for quality control regulation in Good Manufacturing Practice (GMP) factory. In this article, we provide an overview on NGS, summarize the cases on the use of NGS to identify herbal products, discuss the key technological challenges and provide perspectives on future directions for authentication and quality control of herbal products.  相似文献   

11.
Traditional oriental medicines (TOM), with a very long history and many remarkable features, are very popular in Asian countries, especially in China, Japan and Korea. With the development of advanced analytical techniques, the modernization of traditional medicine has become a hot area in recent years and some herbal medicines have been increasingly accepted in western countries. Separation and determination of active components in various herbal medicines are considered to be critical for the modernization process. Antibacterial and antirheumatism agents are widely distributed in many medical plants and commonly used in clinical treatment. Therefore, the development of effective separation methods for the quality control of herbal medicines is absolutely important. In this article, the separation methods for the analysis of antibacterial and antirheumatism compounds in TOM were reviewed, including thin layer chromatography (TLC), gas chromatography (GC), supercritical fluid chromatography (SFC), high-performance liquid chromatography (HPLC), capillary electrophoresis (CE) and related hyphenation techniques. Sample preparation procedures and further development of these methods were also discussed.  相似文献   

12.
以95%乙醇作为提取的溶媒,将加热回流提取得到的提取液水浴挥干得到浸膏,并用甲醇配制成1 mg·m L~(-1)供试液。采用phenomenex-C18(250 mm×4.6 mm,5μm)色谱柱,流动相为乙腈-0.1%磷酸水溶液,梯度洗脱,流速为1.0 m L·min~(-1),柱温为30℃,检测波长为260 nm HPLC色谱法测定,采用国家药典委员会相似度评价软件进行分析。结果表明:建立了精密度、稳定性和重现性均较好的5味山姜属中药乙酸乙酯部位HPLC指纹图谱,确定了9个共有峰,6个强峰;其中高良姜、大高良姜含有5个共有峰,高良姜和草豆蔻含有3个共有峰,大高良姜和红豆蔻含有2个共有峰,高良姜和益智含有3个共有峰。对5味山姜属中药乙酸乙酯部位化学成分进行相似度分析,得出其相似度分别为0.955、0.805、0.371、0.794、0.345。所建立的5味山姜属中药乙酸乙酯部位的指纹图谱方法稳定、简便、可靠,其特征峰所代表的化学成分的相似性不尽相同,高良姜、大高良姜、草豆蔻的相似性较大,红豆蔻、益智的相似性较小,说明同基原中药之间的化学成分有一定的相关性。该研究结果为探讨山姜属中药亲缘关系与化学成分相关性提供了思路与基础。  相似文献   

13.
The two-dimensional data obtained from GC-MS has been used qualitatively and quantitatively to determine the components of the volatile fractions of Schisandra chinensis obtained by six different extraction methods. Sub-window factor analysis (SFA) was employed to confirm the identities of components determined in different samples. With the help of SFA, and other chemometric techniques, peak purity in the chromatograms was determined, and overlapping peaks were resolved to yield a pure chromatographic profile and mass spectrum for each component. It is demonstrated that the accuracy of qualitative and quantitative analysis may be greatly enhanced using chemometric resolution methods, such methods being particularly valuable with respect to the analysis of complex samples such as traditional Chinese medicines. It is further demonstrated that different extraction methods give rise to volatile fractions of S. chinensis which differ qualitatively and quantitatively in their composition.  相似文献   

14.
Lingzhi is the Chinese name given to the Ganoderma family of mushrooms, which was considered the most valuable medicine in ancient China and was believed to bring longevity, due to its mysterious power of healing the body and calming the mind. Today, Lingzhi is still widely revered as a valuable health supplement and herbal medicine worldwide, as studies (mostly conducted in China, Korea, Japan and the United States) into the medicinal and nutritional values of Lingzhi revealed that it does indeed contain certain bioactive ingredients (such as triterpenes and polysaccharides) that might be beneficial for the prevention and treatment of a variety of ailments, including important diseases such as hypertension, diabetes, hepatitis, cancers, and AIDS. As research into the biological activities of Lingzhi, as well as the quality assurance and quality control of Lingzhi products, require the isolation/purification of active ingredients from Lingzhi, followed by subsequent analytical and/or preparative separations, the present review summarizes the various chromatographic and electrophoretic methods (as well as sample pretreatment methods) typically employed to achieve such extraction/separation procedures.  相似文献   

15.
Paeoniflorin, a novel heat shock protein-inducing compound   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

16.
In the processing field, there is a saying that “seed drugs be stir-fried”. Bitter almond (BA) is a kind of seed Chinese medicine. BA need be used after being fried. To distinguish raw bitter almonds (RBA) from processed products and prove the rationality of “seed drugs be stir-fried”, we analyzed the RBA and five processed products (scalded bitter almonds, fried bitter almonds, honey fried bitter almonds, bran fried bitter almonds, bitter almonds cream) using RP-HPLC fingerprints and chemometric methods. The similarity between RBA and processed products was 0.733∼0.995. Hierarchically clustered heatmap was used to evaluate the changes in components. Principal component analysis (PCA) was used for classification, and all samples are distinguished according to RBA and five processing methods. Six chemical markers were obtained by partial least squares discriminant analysis (PLS-DA). The content and degradation rate of amygdalin and β-glucosidase activity were determined. Compared with RBA, the content and degradation rate of amygdalin, and β-glucosidase activity were increased in bitter almonds cream. The content and degradation rate were decreased, and β-glucosidase was inactivated in other processed products. The above results showed that stir-frying had the best effect. The results showed that processing can ensure the stability of RBA quality, and the saying “seed drugs be stir-fried” is reasonable.  相似文献   

17.
A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative “Similarity” as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the “Similarity” approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.  相似文献   

18.
Phytochemistry and pharmacognosy   总被引:1,自引:0,他引:1  
Phillipson JD 《Phytochemistry》2007,68(22-24):2960-2972
During the past 50 years there have been tremendous advances in chemical and biological techniques of analysis that have transformed research in pharmacognosy. The PSE has regularly held symposia of relevance to pharmacognosy and some of these are briefly reviewed in the area of natural products from higher plants. These symposia have charted the developments that link pharmacognosy with phytochemistry and illustrate the application of increasingly more sophisticated analytical techniques to the discovery of biologically active compounds. Plants have yielded clinical drugs, either as natural product molecules, or as synthetic modifications, particularly for chemotherapeutic treatment of cancer and malaria. Aspects of biotechnology, traditional medicines and herbal medicinal products are briefly discussed.  相似文献   

19.
A new European legislation on herbal medicinal products (HMPs) was developed, in order to harmonise the use of HMPs in the 28 member states of the European Union, according to Directive 2004/24/EC which amended the basic legislation laid down in Directive 2001/83/EC. The objective of this legislation was to ensure the future existence of such products and to consider particular characteristics during the assessment of their quality, efficacy and safety, having defined two categories for herbal medicines: (a) well-established use HMPs, which can be granted a marketing authorisation; and (b) traditional herbal medicinal products which can be granted a registration based on their long-standing safe and efficient use. The Committee on Herbal Medicinal Products was established at the European Medicines Agency in 2004, in order mainly to provide community monographs and list entries on herbal substances and preparations. 120 monographs have been published since then, which offer a scientific and regulatory standard for their safety and efficacy, during their use as medicinal products. The HMPs can be placed in the market after quality, efficacy, and safety have been assessed according to the provisions of the legislation (Directive 2004/24/EC and Directive 2001/83/EC), with adequate labeling information to patients and health care professionals, distinguishing them from other product categories containing herbs like: foods, food supplements, medical devices and cosmetics.  相似文献   

20.
Botanicals and herbal preparations are medicinal preparations, containing a single or two or more medicinal plants. The focus of this review paper is on the analytical methodologies, which included the combination of sample preparation tools and chromatographic techniques for the chemical standardization of marker compounds or active ingredients in botanicals and herbal preparations. The common problems and key challenges in the chemical standardization of botanicals and herbal preparations were discussed. As sample preparation is the most important step in the development of analytical methods for the analysis of constituents present in botanicals and herbal preparations, the strength and weakness of different extraction techniques are discussed. For the analysis of compounds present in the plant extracts, the applications of common chromatographic techniques, such as HPLC, CE, HRGC/MS, HPLC/MS and HPLC/MS/MS are discussed. The strength, weakness and applicability of various separation tools are stated. Procedures for the identification of marker or active compounds in plant extracts, using HPLC/MS, were proposed. Finally, the effects of batch-to-batch variation of the medicinal plants are investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号