首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermostable glycoside hydrolase family-10 xylanase originating from Rhodothermus marinus was cloned and expressed in the methylotrophic yeast Pichia pastoris (SMD1168H). The DNA sequence from Rmxyn10A encoding the xylanase catalytic module was PCR-amplified and cloned in frame with the Saccharomyces cerevisiae alpha-factor secretion signal under the control of the alcohol oxidase (AOX1) promotor. Optimisation of enzyme production in batch fermentors, with methanol as a sole carbon source, enabled secretion yields up to 3gl(-1) xylanase with a maximum activity of 3130Ul(-1) to be achieved. N-terminal sequence analysis of the heterologous xylanase indicated that the secretion signal was correctly processed in P. pastoris and the molecular weight of 37kDa was in agreement with the theoretically calculated molecular mass. Introduction of a heat-pretreatment step was however necessary in order to fold the heterologous xylanase to an active state, and at the conditions used this step yielded a 200-fold increase in xylanase activity. Thermostability of the produced xylanase was monitored by differential-scanning calorimetry, and the transition temperature (T(m)) was 78 degrees C. R. marinus xylanase is the first reported thermostable gram-negative bacterial xylanase efficiently secreted by P. pastoris.  相似文献   

2.
The yeast Cryptococcus albidus secretes a glycosylated xylanase (48 kDa) in the culture medium in response to beta-methylxyloside as inducer. Addition of tunicamycin to the medium results in the formation of a modified xylanase (40 kDa) which is depleted in carbohydrate content and whose enzymatic activity is 2.5 times less than that of the glycosylated xylanase. The secretion of xylanase was followed under both conditions by pulse-chase experiments. The half-time of secretion of the glycosylated and nonglycosylated forms was 5 and 2 h, respectively. Cell-associated xylanase activity was not detected when the cells were treated with the antibiotic. The absence of cell wall-associated xylanase, after tunicamycin treatment, was confirmed by immunolocalization with anti-xylanase antibodies at the electron microscopic level. The results suggest that the interactions of carbohydrate moiety within the cell wall retarded the secretion of the enzyme to the medium.  相似文献   

3.
It has been shown that there is hemicellulase (xylanase) activity in cell-free filtrates of rumen liquor. This activity changes during the feeding cycle. The optimal pH and temperature for this activity have been found, as have the substrate-to-enzyme ratios. Many reagents, particularly heavy metal ions and phenols, inhibit the activity, but the activity is enhanced by reducing agents. No activity towards monosaccharides, disaccharides, or glycosides was found. The xylanase component was not stable, due to proteolytic enzymes in the rumen liquor, but could be purified by a variety of methods to give more-stable enzymes.  相似文献   

4.
The heterologous secretion of xylanase B from Penicillium purpurogenum using glucose as inducer was performed in Aspergillus nidulans. For this purpose, plasmid pEVXB, containing the xylanase B cDNA (including its own signal peptide) under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter, was constructed and used to transform A. nidulans. Analysis of transformed clones showed that several of them secreted extracellular xylanase activity when grown in a medium containing glucose. The clone showing the highest xylanase activity was chosen for further work. When this clone was grown on glucose, xylanase activity (0.72 U/ml), was detected in the culture supernatant. This was confirmed by a zymogram analysis and by the amplification of xynB cDNA from this clone. To our knowledge, this is the first example of the production of a xylanase from Penicillium in heterologous fungal hosts using glucose as inducer.  相似文献   

5.
AIMS: To obtain reliable transformation of a range of Butyrivibrio fibrisolvens strains and to express a Neocallimastix patriciarum xylanase gene in the recipients. METHODS AND RESULTS: Eight strains (H17c, E14, LP1309, LP1028, AR11a, OB156, LP210B and LP461A) of Bu. fibrisolvens were transformed by the Gram-positive vector pUB110. A xylanase expression/secretion cassette containing Bu. fibrisolvens promoter and signal peptide elements fused to catalytic domain II of the N. patriciarum xylanase A cDNA (xynANp) was inserted into pUB110 to create the plasmid pUBxynA. pUBxynA was used to transform seven of the Bu. fibrisolvens strains transformed by pUB110. In strain H17c pUBxynA, which produced native xylanase, 2.46 U mg-1 total xylanase activity was produced with 45% extracellular xylanase. In strain H17c pUMSX, 0.74 U mg-1 total xylanase activity was produced with 98% extracellular xylanase. H17c pUBxynA exhibited increased (28.7%) degradation of neutral detergent fibre compared with unmodified H17c; however, progressive loss of pUBxynA was observed in long-term cultivation. CONCLUSIONS: A stable transformation system was developed that was applicable for a range of Bu. fibrisolvens strains and high levels of expression of a recombinant xylanase were obtained in H17c which lead to increased fibre digestion. SIGNIFICANCE AND IMPACT OF THE STUDY: This stable transformation system with the accompanying recombinant plasmids will be a useful tool for further investigation aimed at improving ruminal fibre digestion.  相似文献   

6.
The effects of cultivation pH and agitation rate on growth and extracellular xylanase production by Aspergillus oryzae NRRL 3485 were investigated in bioreactor cultures using spent sulphite liquor (SSL) and oats spelts xylan as respective carbon substrates. Xylanase production by this fungus was greatly affected by the culture pH, with pH 7.5 resulting in a high extracellular xylanase activity in the SSL-based medium as well as in a complex medium with xylan as carbon substrate. This effect, therefore, was not solely due to growth inhibition at the lower pH values by the acetic acid in the SSL. The xylanase activity in the SSL medium peaked at 199 U ml(-1) at pH 7.5 with a corresponding maximum specific growth rate of 0.39 h(-1). By contrast, the maximum extracellular beta-xylosidase activity pf 0.36 U ml(-1) was recorded at pH 4.0. Three low molecular weight xylanase isozymes were secreted at all pH values within the range of pH 4-8, whereas cellulase activity on both carbon substrates was negligible. Impeller tip velocities within the range of 1.56-3.12 m s(-1) had no marked effect, either on the xylanase activity, or on the maximum volumetric rate of xylanase production. These results also demonstrated that SSL constituted a suitable carbon feedstock as well as inducer for xylanase production in aerobic submerged culture by this strain of A. oryzae.  相似文献   

7.
 A genomic library of the extremely thermophilic eubacterial strain Rt8B.4 was constructed in λZapII and screened for the expression of xylanase activity. One recombinant bacteriophage showed xylanase, xylosidase and arabinosidase activity. Sequence analysis and homology comparisons showed that this plasmid derivative, pNZ2011, was composed of 6.7 kb thermophilic DNA and contained what appeared to be an operon-like structure involving genes associated with xylose metabolism. The xylanase gene, xynA was shown to code for a multi-domain protein. Xylanase activity was shown to be associated with the carboxy-terminal domain (domain 2) by deletion analysis and also by selective polymerase chain reaction (PCR) amplification and expression of the individual domains. Denaturing polyacrylamide gel analysis of the protein encoded by the PCR product showed three main overexpressed proteins to be present in cell extracts, presumably caused by proteolytic degradation in the Escherichia coli host. The xylanase activity from domain 2 is associated with a 36-kDa protein, which is stable at 70°C for at least 12 h at pH 7. The small size of this active enzymatic domain and its temperature stability suggest that it may be of value in the enzyme-enhanced bleaching of kraft pulp. Received: 18 April 1995/Received revision: 4 August 1995/Accepted: 22 August 1995  相似文献   

8.
A previous report dealt with the cloning in Escherichia coli and sequencing of both the cDNA and genomic DNA encoding a highly active xylanase (XynA) of Aureobasidium pullulans (X.-L. Li and L. G. Ljungdahl, Appl. Environ. Microbiol. 60:3160-3166, 1994). Now we show that the gene was expressed in Saccharomyces cerevisiae under the GAL1 promoter in pYES2 and that its product was secreted into the culture medium. S. cerevisiae clone pCE4 with the whole open reading frame of xynA, including the part coding for the signal peptide, had xylanase activity levels of 6.7 U ml-1 in the cell-associated fraction and 26.2 U ml-1 in the culture medium 4 h after galactose induction. Two protein bands with sizes of 25 and 27 kDa and N-terminal amino acid sequences identical to that of APX-II accounted for 82% of the total proteins in the culture medium of pCE4. These proteins were recognized by anti-APX-II antibody. The results suggest that the XynA signal peptide supported the posttranslational processing of xynA product and the efficient secretion of the active xylanase from S. cerevisiae. Clones pCE3 and pGE3 with inserts of cDNA and genomic DNA, respectively, containing only the mature enzyme region attached by a Met codon had low levels of xylanase activity in the cell-associated fractions (1.6 U ml-1) but no activity in the culture media. No xylanase activity was detected in clone pGE4, which was the same as pCE4, except that pGE4 had a 59-bp intron in the signal peptide region. A comparison of the A. pullulans and S. cerevisiae signal peptides demonstrated that the XynA signal peptide was at least three times more efficient than those of S. cerevisiae invertase or mating alpha-factor pheromone in secreting the heterologous xylanase from S. cerevisiae cells.  相似文献   

9.
The production of extracellular xylanase by a newly isolated thermophilic fungus, Paecilomyces themophila J18, on the lignocellulosic materials was studied in solid-state fermentation (SSF). The strain grew well at 50 degrees C and produced a high-level of xylanase activity using the selected lignocellulosic materials, especially wheat straw. Production of xylanase by P. themophila J18 on wheat straw was enhanced by optimizing the particle size of wheat straw, nitrogen source, initial moisture level, growth temperature and initial pH of the culture medium. Under the optimized conditions, yield as high as 18,580 Ug(-1) of carbon source of xylanase was achieved. No CMCase activity was observed. The xylanase exhibited remarkable stability and retained more than 50% of its original activity at 70 degrees C for 4h at pH 7.0-8.0. Therefore, P. themophila J18 could to be a promising microorganism for thermostable, cellulase-free xylanase production in SSF.  相似文献   

10.
CvaB, a member of the ATP-binding cassette transporter superfamily, is the central membrane transporter of the colicin V secretion system in Escherichia coli. Cys32 and His105 in the N-terminal domain of CvaB were identified as critical residues for both colicin V secretion and cysteine proteolytic activity. By inhibiting degradation with N-ethylmaleimide and a mixture of protease inhibitors, a stable wild-type N-terminal domain (which showed cysteine protease activity when activated) was purified. Such protease activity was Ca2+- and concentration-dependent and could be inhibited by antipain, N-ethylmaleimide, EDTA, and EGTA. At low concentrations, the Ca2+ analogs Tb3+ and La3+ (but not Fe3+) significantly enhanced proteolytic activity, suggesting that the size of the cations is important for activity. Together with comparisons of the sequences of members of the cysteine protease family, these results indicate that Cys32 and His105 are the critical residues in the CvaB N-terminal domain for the calcium-dependent cysteine protease activity and secretion of colicin V.  相似文献   

11.
The initial moisture content, cultivation time, inoculum size and concentration of basal medium were optimized in solid state fermentation (SSF) for the production of xylanase by an Aspergillus niger mutant using statistical experimental designs. The cultivation time and concentration of basal medium were the most important factors affecting xylanase activity. An inoculum size of 5 x 10(5) spores/g, initial moisture content of 65%, cultivation time of 5 days and 10 times concentration of basal medium containing 50 times concentration of corn steep liquor were optimum for xylanase production in SSF. Under the optimized conditions, the activity and productivity of xylanase obtained after 5 days of fermentation were 5,071 IU/g of rice straw and 14,790 IU l(-1) h(-1), respectively. The xylanase activity predicted by a polynomial model was 5,484 IU/g of rice straw.  相似文献   

12.
The bacterial twin-arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane. The precursors targeted to the Tat pathway have signal peptides bearing the consensus motif (S/T-R-R-X-F-L-K). The xylanase C (XlnC) of Streptomyces lividans is a 20-kDa secreted enzyme. The XlnC signal peptide is 49 amino acids long and contains the S-R-R-G-F-L-G sequence, which is similar to the twin-arginine consensus motif. In S. lividans, XlnC secretion was impaired in a tatC insertion mutant, which is unable to secrete proteins that are dependent on the Tat system. When the signal peptide of XlnC was replaced by the Sec-dependent signal peptide of xylanase A, XlnC was secreted as an inactive form and demonstrated rapid proteolytic degradation in the culture supernatant, thus indicating that XlnC was specifically secreted through the Tat system. Deletions of the n-region of the XlnC signal sequence showed that a minimum of six amino acids residues preceding the twin-arginine motif was required to secrete XlnC. Replacement of one or both arginines by lysine residues in the twin arginine motif decreased four- and sevenfold, respectively, the enzyme production but did not abolish it. However, pulse chase experiments showed that the half-life of the precursor was from 2 to 3 h instead of 11 min for the wild- type precursor. Since XlnC is not associated with cofactors to exhibit activity, it is therefore a newly identified prokaryotic non-redox Tat substrate.  相似文献   

13.
AIMS: To express a gene encoding a heterologous fungal xylanase in Trichoderma reesei. METHODS AND RESULTS: Humicola grisea xylanase 2 (xyn2) cDNA was expressed in Trichoderma reesei under the main cellobiohydrolase I (cbh1) promoter (i) as a fusion to the cellobiohydrolase I (CBHI) secretion signal and (ii) the mature CBHI core-linker. The recombinant xylanase (HXYN2) was secreted into the cultivation medium and processed in a similar fashion to the endogenous T. reesei xylanases, resulting in an active enzyme. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: HXYN2 was successfully processed in T. reesei. Composition of the culture medium affected the HXYN2 yields, favouring Avicel-lactose as a carbon source. Best yields (about 0.5 g l(-1)) in shake flask cultivations were obtained from a transformant where xyn2 was fused directly to the CBHI secretion signal.  相似文献   

14.
15.
Aspergillus fumigatus andA. oryzae were cultivated in laboratory fermenters on media containing xylan as the main carbon source.A. fumigatus produced xylanase on unsubstituted, insoluble beech xylan but growth and enzyme production on soluble xylo-oligosaccharides from the steaming of hardwood were poor due to the presence of inhibitors. An essential prerequisite for good xylanase production byA. fumigatus was decrease in the pH of the cultivation below 3.0 At higher pH values, the production of proteolytic enzymes caused degradation of the xylanase activity already produced.A. oryzae produced rather less xylanase activity thanA. fumigatus on the beech xylan medium but, after adaptation, was capable of efficient enzyme production on the steamed substrate.M.J. Bailey and L. Viikari are with the VTT, Biotechnical Laboratory, PO Box 202, SF-02151 Espoo, Finland  相似文献   

16.
The somatostatin analog SOM230 has potent radioprophylactic and radiation mitigating properties that are unrelated to cytoprotection but appear to be due to suppression of secretion of pancreatic enzymes into the intestinal lumen. To determine the maximal postirradiation time window for administration, male CD2F1 mice were exposed to 8.5-11 Gy total-body radiation; SOM230 (0.5, 2 or 5 mg/kg) or vehicle was given by twice daily subcutaneous injections for 14 days, beginning 24-72 h after irradiation, and 30-day animal survival was recorded. The contribution of the gut to systemic cytokine levels was estimated by analyzing plasma samples obtained simultaneously from the portal vein and carotid artery. The effect of SOM230 on cell trypsin secretion was assessed in vitro and intestinal proteolytic activity was measured in vivo. SOM230 was associated with a 40-60% absolute improvement in overall postirradiation survival when treatment was started 48 h after irradiation and even exhibited a statistically significant survival benefit when started at 72 h. SOM230 ameliorated the radiation-induced decrease in chemokine (C-X-C motif) ligand 9 (CXCL9). SOM230 inhibited pancreatic acinar cell trypsin secretion in vitro in a dose-dependent fashion and reduced intraluminal and intestinal tissue proteolytic activity in vivo. SOM230 is an excellent radiation mitigator with a postirradiation time window in excess of 48 h. The mechanism likely involves preservation of intestinal barrier function due to decreased secretion of pancreatic enzymes into the bowel lumen.  相似文献   

17.
Vitamin D and its derivatives (deltanoids) are potent regulators of cell proliferation and differentiation. Targeted production of proteolytic enzymes like serine proteases and metalloproteinases is an important part of the invasive process of cancer cells. Treatment with 1 alpha25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] decreases the invasive properties of breast carcinoma cells. Here we have analyzed the effects of 1alpha,25(OH)2D3 and its synthetic analogues on the secretion and cell surface association of the components of the plasminogen activator (PA) system and on the secretion of certain matrix metalloproteinases (MMPs) and their inhibitors in MDA-MB-231 breast carcinoma cells. Deltanoids were able to decrease the secretion of urokinase PA and tissue-type PA activity in a dose-dependent manner and to increase PA inhibitor 1 secretion, leading to reduced total PA activity. CB1093 was the most potent analogue, effective at concentrations several logarithms lower than 1alpha,25(OH)2D3. Transient transfection of different urokinase PA promoter reporter constructs to HT-1080 fibrosarcoma indicator cells indicated that vitamin D-responsive sequences were located between nucleotides -2350 and -1870 in the 5' region of the promoter. Treatment of MDA-MB-231 cells with 1alpha,25(OH)2D3 or other deltanoids also resulted in decreased MMP-9 levels in association with increased tissue inhibitor of MMP 1 activity. Membrane-type 1-MMP expression or proteolytic processing were not appreciably affected by deltanoids. Vitamin D and its analogues caused a decrease in Matrigel invasion assays of MDA-MB-231 cells. Cancer cell invasion is associated with coordinated secretion of proteolytic enzymes and their inhibitors. Vitamin D and its derivatives can evidently influence invasive processes by two means: (a) decreasing the expression and activity of cell invasion-associated serine proteases and metalloproteinases; and (b) inducing their inhibitors.  相似文献   

18.
A key factor in Alzheimer's disease (AD) is the beta-secretase activity that is required for the production of beta-amyloid (Abeta) peptide from its amyloid precursor protein (APP) precursor. In this study, the majority of Abeta secretion from neuronal chromaffin cells was found to occur via the regulated secretory pathway, compared with the constitutive secretory pathway; therefore, beta-secretase activity in the regulated secretory pathway was examined for the production and secretion of Abeta in chromaffin cells obtained from in vivo adrenal medullary tissue. The presence of Abeta(1-40) in APP-containing chromaffin vesicles, which represent regulated secretory vesicles, was demonstrated by radioimmunoassay (RIA) and reverse-phase high-performance liquid chromatography. These vesicles also contain Abeta(1-42), measured by RIA. Significantly, regulated secretion of Abeta(1-40) from chromaffin cells represented the majority of secreted Abeta (> 95% of total secreted Abeta), compared with low levels of constitutively secreted Abeta(1-40). These results indicate the importance of Abeta production and secretion in the regulated secretory pathway as a major source of extracellular Abeta. Beta-secretase activity in isolated chromaffin vesicles was detected with the substrate Z-Val-Lys-Met-/MCA (methylcoumarinamide) that contains the beta-secretase cleavage site. Optimum beta-secretase activity in these vesicles required reducing conditions and acidic pH (pH 5-6), consistent with the in vivo intravesicular environment. Evidence for cysteine protease activity was shown by E64c inhibition of Z-Val-Lys-Met-MCA-cleaving activity, and E64c inhibition of Abeta(1-40) production in isolated chromaffin vesicles. Chromatography resolved the beta-secretase activity into two distinct proteolytic pathways consisting of: (i) direct cleavage of the beta-secretase site at Met-/Asp by two cysteine proteolytic activities represented by peaks Il-A and Il-B, and (ii) an aminopeptidase-dependent pathway represented by peak I cysteine protease activity that cleaves between Lys-/Met, followed by Met-aminopeptidase that would generate the beta-secretase cleavage site. Treatment of chromaffin cells in primary culture with the cysteine protease inhibitor E64d reduced the production of the beta-secretase product, a 12-14 kDa C-terminal APP fragment. In addition, BACE 1 and BACE 2 were detected in chromaffin vesicles; BACE 1 represented a small fraction of total beta-secretase activity in these vesicles. These results illustrate that multiple cysteine proteases, in combination with BACE 1, contribute to beta-secretase activity in the regulated secretory pathway. These results complement earlier findings for BACE 1 as beta3-secretase for Abeta production in the constitutive secretory pathway that provides basal secretion of Abeta into conditioned media. These findings suggest that drug inhibition of several proteases may be required for reducing Abeta levels as a potential therapeutic approach for AD.  相似文献   

19.
Xylanase B1 (XlnB1) from Streptomyces lividans is a protein consisting of two discrete structural and functional units, an N-terminal catalytic domain and a C-terminal substrate binding domain. In the culture medium, two forms of xylanase B are present, namely, XlnB1 and XlnB2, the latter of which corresponds to the catalytic domain of XlnB1 deprived of the substrate binding domain. Both forms of the xylanase have the same activity on xylan. The enzyme is secreted through the Sec-dependent pathway with a better yield of XlnB1 than XlnB2. Interestingly, XlnB2 exhibits 80% identity with XlnC which is secreted exclusively through the Tat-dependent pathway. To demonstrate whether XlnB1 and XlnB2 could also be secreted through the Tat-dependent pathway, the Tat-targeting xlnC signal sequence was fused to the structural genes of xlnB1 and xlnB2. Both XlnB1 and XlnB2 were secreted through the Tat-dependent pathway, but XlnB2 was better produced than XlnB1. As XlnB1 and XlnB2 could be better secreted through the Sec- and Tat-dependent systems, respectively, a copy of the structural gene of xlnB1 fused to a Sec signal sequence and a copy of the structural gene of xlnB2 fused to a Tat signal sequence were inserted into the same plasmid under the control of the xlnA promoter. The transformant produced xylanase activity which corresponded approximately to the sum of activities of the individual strain producing xylanase by either the Sec- or Tat-dependent secretion system. This indicated that both secretion systems are functional and independent of each other in the recombinant strain. This is the first report on the efficient secretion of a protein using two different secretion systems at the same time. Assuming that the protein to be secreted could be properly folded prior to and after translocation via the Tat- and Sec-dependent pathways, respectively, the simultaneous use of the Sec- and Tat-dependent pathways provides an efficient means to increase the production of a given protein.  相似文献   

20.
Ganoderma lucidum, a white rot fungus, was exploited for its potentials to produce xylanase employing shake and solid-state culture conditions. Different culture conditions such as pH, temperature, carbon and nitrogen requirements for its growth and production of xylanase were optimized. The culture media pH 6.0-7.0 and temperatures 30 degrees-35 degrees C significantly promoted the growth as well as xylanase secretion into the media. Xylan and peptone were found to be the suitable carbon and nitrogen sources. Among the different agrowastes used, wheat bran was found to be the best substrate for the test fungus for the production of xylanase than sugarcane bagasse and rice bran in solid-state fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号