首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Prairie grouse (genus: Tympanuchus) once existed throughout much of North America but have recently experienced significant population declines, isolation, and extinction. In previous molecular studies, contrasting patterns or an unresolved polytomy among Tympanuchus taxa (Tympanuchus phasianellus, Tympanuchus pallidicinctus, and Tympanuchus cupido) have resulted from traditional phylogenetic methods. As an alternative approach, the timing of expansion and the demographic processes that may have lead to this association among haplotypes, namely incomplete lineage sorting or migration, were explicitly investigated by comparing pairwise mitochondrial DNA control region nucleotide differences and through the use of a isolation with migration coalescent model. The timing of geographic expansion and population divergence time estimates generated under these models support previous inferences that Tympanuchus experienced a rapid expansion and diversification in the late Pleistocene 10,000-80,000 years before present. Further, morphological and behavioral differences originally used to describe Tympanuchus species were substantiated with little or no migration identified since population divergence. However, estimates of population divergence and migration between a number of morphologically similar subspecific taxa, including the greater prairie chicken (Tympanuchus Cupido pinnatus), the endangered Attwater's prairie chicken (Tympanuchus Cupido attwateri), and the extinct heath hen (Tympanuchus Cupido cupido), suggest these taxa are as differentiated with each other as they are from other Tympanuchus species. This information will prove useful in conservation efforts by providing estimates of demographic history that have helped shape the evolutionary relationships among Tympanuchus grouse.  相似文献   

2.
Behavioural ecologists have interpreted avian leks as products of sexual selection, in which males display socially to increase their opportunities to mate. However, without invoking reproductive queuing or kin selection, this paradigm does not necessarily explain why many males that fail to mate participate in leks. An alternative solution, that males also aggregate to reduce predation, has previously lacked compelling support. We show that mixed-species leks, comprising two congeneric grouse, form when single males or small groups of one species, the greater prairie chicken Tympanuchus cupido, join leks of another, the sharp-tailed grouse T. phasianellus. We documented the process by observing lek dynamics and comparing group sizes between mixed- and single-species leks. Joining implies that prairie chickens benefit from displaying with sharp-tailed grouse. The numbers of females of each species attending a lek increased with the number of conspecific, but not heterospecific, males. This suggests that the joining of heterospecifics is unlikely to increase mating opportunities, and leaves lowered predation risk as the most likely benefit of associating with heterospecifics. Active formation of mixed-species leks therefore suggests that predation may be sufficient to drive lek formation. The benefits of participation in mixed leks may be asymmetrical because prairie chickens display more and are less vigilant than sharp-tailed grouse.  相似文献   

3.
Although managers have speculated that parasitism might have contributed to the endangerment of the Attwater's prairie chicken Tympanuchus cupido attwateri , no data are available to evaluate this hypothesis. Because time is constraining, I attempted to determine whether Attwater's prairie chicken are likely to harbor helminthic endoparasites known to cause disease in other grouse so that a more informed decision regarding whether to commit time and other resources to field studies and experimental trials can be made. Using polar ordination, 1 found a gradient among 10 surveys of helminthic endoparasites of prairie grouse collected from several midcontinental ecoregions of the USA (1931 -1977). A regression model including variables representing 1) normal annual precipitation and 2) normal winter (Dec.-Feb.) temperature and the proportion of normal annual precipitation received during the winter could account for this gradient. When meteorological data from areas inhabited by the remaining 3 Attwater's prairie chicken populations were incorporated, the models predicted that Attwater's prairie chicken might be expected to harbor helminthic endoparasite communities similar to those of greater prairie chicken T. c. pinnatus populations surveyed in Illinois, Kansas, and Missouri. Two parasite species associated with disease in North American grouse Dispharynx nasuta, Heterakis gallinarum were found during these studies. Additionally, Attwater's prairie chicken might be expected to maintain parasites not found during any of the surveys I evaluated. This study suggests that it would be worthwhile to survey free-living Attwater's prairie chicken to determine whether individuals harbor helminthic endoparasites shown pathogenic to other grouse species, even if the methodologies employed must be somewhat constrained.  相似文献   

4.
Rapid expansion of the wind energy industry has raised concerns about the potential effects of anthropogenic disturbance on prairie grouse. While efforts have been made to address the effects of wind energy facilities on measures of fitness, their effect on the behaviors of prairie grouse has been largely neglected. To address these concerns, we investigated the effects of an existing wind energy facility in Nebraska that became operational in 2005 on the lekking behavior of male greater prairie‐chickens Tympanuchus cupido pinnatus between March and May 2013. Given the potential for disturbance caused by wind turbine noise to disrupt acoustic communication and thus behavior, we predicted that males at leks close to, compared to far from, the wind energy facility would spend more time in agonistic behaviors, and less in booming displays. Given the potential for wind turbine noise to reduce the number of females attending leks (hereafter ‘female lek attendance’), we also predicted that males at leks close to the wind energy facility would spend more time in non‐breeding behaviors and less time in breeding behaviors than males farther from the facility. Although we found no effect of the wind energy facility on female lek attendance, males at leks closer to the wind energy facility spent less time in non‐breeding behaviors than those at leks farther away. However, distance from the wind energy facility had no effect on time spent performing booming displays, flutter jumps, or in agonistic behaviors. Given that lekking behaviors of males influence mating success, our results may have consequences for the fitness of prairie grouse breeding in the vicinity of wind energy facilities.  相似文献   

5.
The Attwater's prairie-chicken (Tympanuchus cupido attwateri), a federally endangered grouse species, is currently experiencing high chick mortality in wild populations and the causes are unknown. We tested 3 indicators of innate immunity (hemaggluttination, serum lysozyme, and total immunoglobulin [IgY] levels) in the Attwater's prairie-chicken and a closely related sub-species, the greater prairie-chicken (Tympanuchus cupido pinnatus). Agglutination titers were approximately 25% higher in the juvenile and adult Attwater's prairie-chickens compared to equivalently aged greater prairie-chickens. Additionally, total IgY levels in wild-collected Attwater's prairie-chicken egg samples were 34% higher than IgY levels in captive greater prairie-chickens or Attwater's prairie-chicken eggs. These results suggest that differences in innate immune function exist between these sub-species and also among Attwater's prairie-chicken subpopulations that are exposed to different environmental conditions. © 2012 The Wildlife Society.  相似文献   

6.
Greater prairie-chickens (Tympanuchus cupido pinnatus) were once found throughout the tallgrass prairie of midwestern North America but over the last century these prairies have been lost or fragmented by human land use. As a consequence, many current populations of prairie-chickens have become isolated and small. This fragmentation of populations is expected to lead to reductions in genetic variation as a result of random genetic drift and a decrease in gene flow. As expected, we found that genetic variation at both microsatellite DNA and mitochondrial DNA (mtDNA) markers was reduced in smaller populations, particularly in Wisconsin. There was relatively little range-wide geographical structure (FST) when we examined mtDNA haplotypes but there was a significant positive relationship between genetic (FST) and geographical distance (isolation by distance). In contrast, microsatellite DNA loci revealed significant geographical structure (FST) and a weak effect of isolation by distance throughout the range. These patterns were much stronger when populations with reduced levels of genetic variability (Wisconsin) were removed from the analyses. This suggests that the effects of genetic drift were stronger than gene flow at microsatellite loci, whereas these forces were in range-wide equilibrium at mtDNA markers. These differences between the two molecular markers may be explained by a larger effective population size (Ne) for mtDNA, which is expected in species such as prairie-chickens that have female-biased dispersal and high levels of polygyny. Our results suggest that historic populations of prairie-chickens were once interconnected by gene flow but current populations are now isolated. Thus, maintaining gene flow may be important for the long-term persistence of prairie-chicken populations.  相似文献   

7.
Wherefore and whither the naturalist?   总被引:5,自引:0,他引:5  
Most, if not all, of the "classic," often-cited examples illustrating the genetic effects of a population bottleneck are open to alternative explanations due to the lack of adequate control populations, that is, low levels of genetic variability are often assumed to be the result of a past population bottleneck without having any prebottleneck measures. Here we provide the first clear case history where both prebottleneck and postbottleneck measures of genetic variability have been collected from a natural system. Analysis of DNA from museum specimens of the greater prairie chicken Tympanuchus cupido from central Illinois revealed the loss of specific alleles (known to have been present earlier in this century) following a demographic contraction. Lost alleles included common ones present in all other populations sampled and others unique to the Illinois population.  相似文献   

8.
Grassland birds have exhibited dramatic and widespread declines since the mid‐20th century. Greater prairie chickens (Tympanuchus cupido pinnatus) are considered an umbrella species for grassland conservation and are frequent targets of management, but their responses to land use and management can be quite variable. We used data collected during 2007–2009 and 2014–2015 to investigate effects of land use and grassland management practices on habitat selection and survival rates of greater prairie chickens in central Wisconsin, USA. We examined habitat, nest‐site, and brood‐rearing site selection by hens and modeled effects of land cover and management on survival rates of hens, nests, and broods. Prairie chickens consistently selected grassland over other cover types, but selection or avoidance of management practices varied among life‐history stages. Hen, nest, and brood survival rates were influenced by different land cover types and management practices. At the landscape scale, hens selected areas where brush and trees had been removed during the previous year, which increased hen survival. Hens selected nest sites in hay fields and brood‐rearing sites in burned areas, but prescribed fire had a negative influence on hen survival. Brood survival rates were positively associated with grazing and were highest when home ranges contained ≈15%–20% shrub/tree cover. The effects of landscape composition on nest survival were ambiguous. Collectively, our results highlight the importance of evaluating responses to management efforts across a range of life‐history stages and suggest that a variety of management practices are likely necessary to provide structurally heterogeneous, high‐quality habitat for greater prairie chickens. Brush and tree removal, grazing, hay cultivation, and prescribed fire may be especially beneficial for prairie chickens in central Wisconsin, but trade‐offs among life‐history stages and the timing of management practices must be considered carefully.  相似文献   

9.
Low genetic variation is often considered to contribute to the extinction of species when they reach small population sizes. In this study we examined the mitochondrial control region from museum specimens of the Heath Hen (Tympanuchus cupido cupido), which went extinct in 1932. Today, the closest living relatives of the Heath Hen, the Greater (T. c. pinnatus), Attwater’s (T. c. attwateri) and Lesser (T. pallidicinctus) Prairie-chicken, are declining throughout most of their range in Midwestern North America, and loss of genetic variation is a likely contributor to their decline. Here we show that 30 years prior to their extinction, Heath Hens had low levels of mitochondrial genetic variation when compared with contemporary populations of prairie-chickens. Furthermore, some current populations of Greater Prairie-chickens are isolated and losing genetic variation due to drift. We estimate that these populations will reach the low levels of genetic variation found in Heath Hens within the next 40 years. Genetic variation and fitness can be restored with translocation of individuals from other populations; however, we also show that choosing an appropriate source population for translocation can be difficult without knowledge of historic population bottlenecks and their effect on genetic structure.  相似文献   

10.
Translocations are becoming increasingly popular as appropriate management strategies for the genetic restoration of endangered species and populations. Although a few studies have shown that the introduction of novel alleles has reversed the detrimental effects of inbreeding over the short-term (i.e., genetic rescue), it is not clear how effective such translocations are for both maintaining neutral variation that may be adaptive in the future (i.e., genetic restoration) and increasing population viability over the long-term. In addition, scientists have expressed concerns regarding the potential genetic swamping of locally adapted populations, which may eliminate significant components of genetic diversity through the replacement of the target population by the source individuals used for translocations. Here we show that bird translocations into a wild population of greater prairie-chickens (Tympanuchus cupido pinnatus) in southeastern Illinois were effective in both removing detrimental variation associated with inbreeding depression as well as restoring neutral genetic variation to historical levels. Furthermore, we found that although translocations resulted in immediate increases in fitness, the demographic recovery and long-term viability of the population appears to be limited by the availability of suitable habitat. Our results demonstrate that although translocations can be effective management tools for the genetic restoration of wild populations on the verge of extinction, their long-term viability may not be guaranteed unless the initial conditions that led to most species declines (e.g., habitat loss) are reversed.  相似文献   

11.
Little is known about the spatial and temporal scales at which planktonic organisms are genetically structured. A previous study of mitochondrial DNA (mtDNA) in the holoplanktonic chaetognath Sagitta setosa revealed strong phylogeographic structuring suggesting that Northeast (NE) Atlantic, Mediterranean and Black Sea populations are genetically disjunct. The present study used a higher sampling intensity and a combination of mitochondrial and four microsatellite markers to reveal population structuring between and within basins. Between basins, both marker sets indicated significant differentiation confirming earlier results that gene flow is probably absent between the respective S. setosa populations. At the within-basin scale, we found no evidence of spatial or temporal structuring within the NE Atlantic. In the Mediterranean basin, both marker sets indicated significant structuring, but only the mtDNA data indicated a sharp genetic division between Adriatic and all other Mediterranean populations. Data were inconclusive about population structuring in the Black Sea. The levels of differentiation indicated by the two marker sets differed substantially, with far less pronounced structure detected by microsatellite than mtDNA data. This study also uncovered the presence of highly divergent mitochondrial lineages that were discordant with morphology, geography and nuclear DNA. We thus propose the hypothesis that highly divergent mitochondrial lineages may be present within interbreeding S. setosa populations.  相似文献   

12.

A variety of conservation management strategies have been developed to address rapid, anthropogenically-driven biodiversity loss. The translocation of individuals from viable populations to those experiencing significant decline is one such strategy to increase genetic diversity and avoid extirpation, yet efficacy of this strategy has rarely been examined in detail utilizing genomic data. Here, we employ a conservation icon, the greater prairie-chicken (Tympanuchus cupido pinnatus), as a case study to demonstrate how genome-wide SNPs derived from RADseq offer the ability to assess translocation success with respect to the genomic aspects of genetic restoration, encompassing (1) the alleviation of inbreeding (2) the restoration of evolutionary potential, and (3) the maintenance of local variation. Genome-wide diversity estimates calculated from 356,778 SNPs demonstrate that translocations rescued the Illinois population from severe inbreeding and lack of genetic diversity, restoring variation to levels comparable to the three non-bottlenecked source populations. Delineation of genetic structure using non-linked and ubiquitously genotyped SNPs reveal distinct genetic variation among the source and recipient populations as well as high levels of admixture in the post-translocation population resulting from translocations. Estimated ancestry derived from private alleles uncover introgression of unique variation from each source population as well as the maintenance of substantial levels of variation unique to Illinois. Our findings demonstrate that genome-wide analysis of variation is a valuable management tool for measuring the genomic effects of translocations and, subsequently, gauging genetic restoration success.

  相似文献   

13.
The major histocompatibility complex (MHC) plays a central role in innate and adaptive immunity, but relatively little is known about the evolution of the number and arrangement of MHC genes in birds. Insights into the evolution of the MHC in birds can be gained by comparing the genetic architecture of the MHC between closely related species. We used a fosmid DNA library to sequence a 60.9-kb region of the MHC of the greater prairie chicken (Tympanuchus cupido), one of five species of Galliformes with a physically mapped MHC. Greater prairie chickens have the smallest core MHC yet observed in any bird species, and major changes are observed in the number and arrangement of MHC loci. In particular, the greater prairie chicken differs from other Galliformes in the deletion of an important class I antigen binding gene. Analysis of the remaining class IA gene in a population of greater prairie chickens in Wisconsin, USA revealed little evidence for selection at the region responsible for antigen binding.  相似文献   

14.
The Conservation Reserve Program (CRP) has the potential to influence the distribution and abundance of grasslands in many agricultural landscapes, and thereby provide habitat for grassland-dependent wildlife. Greater prairie-chickens (Tympanuchus cupido pinnatus) are a grassland-dependent species with large area requirements and have been used as an indicator of grassland ecosystem function; they are also a species of conservation concern across much of their range. Greater prairie-chicken populations respond to the amount and configuration of grasslands and wetlands in agriculturally dominated landscapes, which in turn can be influenced by the CRP; however, CRP enrollments and enrollment caps have declined from previous highs. Therefore, prioritizing CRP reenrollments and new enrollments to achieve the greatest benefit for grassland-dependent wildlife seems prudent. We used models relating either lek density or the number of males at leks to CRP enrollments and the resulting landscape structure to predict changes in greater prairie-chicken abundance related to changes in CRP enrollments. We simulated 3 land-cover scenarios: expiration of existing CRP enrollments, random, small-parcel (4,040 m2) addition of CRP grasslands, and strategic, large-parcel (80,000 m2) addition of CRP grasslands. Large-parcel additions were the average enrollment size in northwestern Minnesota, USA, within the context of a regional prairie restoration plan. In our simulations of CRP enrollment expirations, the abundance of greater prairie-chickens declined when grassland landscape contiguity declined with loss of CRP enrollments. Simulations of strategic CRP enrollment with large parcels to increase grassland contiguity more often increased greater prairie-chicken abundance than random additions of the same area in small parcels that did not increase grassland contiguity. In some cases, CRP enrollments had no or a negative predicted change in greater prairie-chicken abundance because they provided insufficient grassland contiguity on the landscape, or increased cover-type fragmentation. Predicted greater prairie-chicken abundance increased under large-parcel and small-parcel scenarios of addition of CRP grassland; the greatest increases were associated with large-parcel additions. We suggest that strategic application of the CRP to improve grassland contiguity can benefit greater prairie-chicken populations more than an opportunistic approach lacking consideration of the larger landscape context. Strategic implementation of the CRP can benefit greater prairie-chicken populations in northwestern Minnesota, and likely elsewhere in landscapes where grassland continuity may be a limiting factor. © 2020 The Wildlife Society.  相似文献   

15.
The primary goal of captive breeding programmes for endangered species is to prevent extinction, a component of which includes the preservation of genetic diversity and avoidance of inbreeding. This is typically accomplished by minimizing mean kinship in the population, thereby maintaining equal representation of the genetic founders used to initiate the captive population. If errors in the pedigree do exist, such an approach becomes less effective for minimizing inbreeding depression. In this study, both pedigree‐ and DNA‐based methods were used to assess whether inbreeding depression existed in the captive population of the critically endangered Attwater's Prairie‐chicken (Tympanuchus cupido attwateri), a subspecies of prairie grouse that has experienced a significant decline in abundance and concurrent reduction in neutral genetic diversity. When examining the captive population for signs of inbreeding, variation in pedigree‐based inbreeding coefficients (fpedigree) was less than that obtained from DNA‐based methods (fDNA). Mortality of chicks and adults in captivity were also positively correlated with parental relatedness (rDNA) and fDNA, respectively, while no correlation was observed with pedigree‐based measures when controlling for additional variables such as age, breeding facility, gender and captive/release status. Further, individual homozygosity by loci (HL) and parental rDNA values were positively correlated with adult mortality in captivity and the occurrence of a lethal congenital defect in chicks, respectively, suggesting that inbreeding may be a contributing factor increasing the frequency of this condition among Attwater's Prairie‐chickens. This study highlights the importance of using DNA‐based methods to better inform management decisions when pedigrees are incomplete or errors may exist due to uncertainty in pairings.  相似文献   

16.
As a result of recurrent droughts and anthropogenic factors, the range of the lesser prairie-chicken (Tympanuchus pallidicinctus) has contracted by 92% and the population has been reduced by approximately 97% in the past century, resulting in the smallest population size and most restricted geographical distribution of any North American grouse. We examined genetic variation through DNA sequence analysis of 478 base pairs of the mitochondrial genome and by assaying allelic variation at five microsatellite loci from lesser prairie-chickens collected on 20 leks in western Oklahoma and east-central New Mexico. Traditional population genetic analyses indicate that lesser prairie-chickens maintain high levels of genetic variation at both nuclear and mitochondrial loci. Although some genetic structuring among lesser prairie-chicken leks was detected within Oklahoma and New Mexico for both nuclear and mitochondrial loci, high levels of differentiation were detected between Oklahoma and New Mexico populations. Nested-clade analysis of mitochondrial haplotypes revealed that both historic and contemporary processes have influenced patterns of haplotype distributions and that historic processes have most likely led to the level of differentiation found between the Oklahoma and New Mexico populations.  相似文献   

17.
1.  Birds of prey and driven-grouse shooting are at the centre of a long-standing human–wildlife conflict. Hen harrier predation can reduce grouse shooting bags, limit grouse populations and cause economic losses. Despite legal protection, hen harrier numbers are severely depleted on driven-grouse moors.
2.  In limited trials, provision of supplementary food to hen harriers greatly reduced their predatory impact on young grouse, but did not result in higher grouse densities for shooting. Consequently, grouse moor managers have failed to adopt the technique.
3.  A recent Forum paper has called for a trial 'population ceiling scheme' for hen harriers, arguing that this represents the best way to increase hen harrier numbers on driven-grouse moors. Once densities exceed the agreed ceiling, the excess would be translocated to other suitable habitat.
4.  Whilst a 'ceiling' scheme might work, it would be difficult to implement and we believe that other approaches to population recovery should be tested first.
5.  While driven-grouse shooting makes an important economic contribution to some rural communities, some grouse moor owners receive considerable sums of public money. Despite this, many moors are in poor condition, the ecosystem services they supply may be at risk from both climate change and current management practices, and grouse numbers are in decline. The socio-economic and environmental implications of alternative models of grouse management need urgent examination.
6.   Synthesis and applications . If driven-grouse shooting is only viable when birds of prey are routinely disturbed and killed, then we question the legitimacy of driven-grouse shooting as a sustainable land use. Moorland owners need to consider more broadly sustainable shooting practices for the 21st century.  相似文献   

18.
Very little is known about the distribution of genetic variance within and among populations of parasitic helminths. In this study we used mitochondrial DNA (mtDNA) restriction fragment analysis to describe the population genetic structure of Ostertagia ostertagi, a nematode parasite of cattle, in the United States. Estimates of within-population mtDNA diversity are 5 to 10 times greater than typical estimates reported for species in other taxa. Although populations are genetically differentiated for a key life–history trait, greater than 98% of the total genetic diversity is partitioned within populations, and the geographic distribution of individual mtDNA haplotypes suggests high gene flow among populations.  相似文献   

19.
The taxonomic status of red grouse in Ireland has been the subject of considerable debate over the past century. Irish red grouse are usually classified as Lagopus lagopus scoticus, which is the same subspecies as that found in Britain, but some ornithologists believe that native Irish red grouse constitute an endemic subspecies, namely L. lagopus hibernicus. The considerable decline of Irish red grouse over the past century, along with possible hybridization with introduced grouse from Britain, have highlighted the need to resolve their taxonomic status as part of a biodiversity management plan. However, genetic analysis of samples from a single point in time will provide limited insight into potentially confounding historical events such as hybridization and introgression. We therefore compared mtDNA sequences from both current and historical samples of the two putative subspecies, scoticus and hibernicus, to see if they are or were genetically distinct. Red grouse from Britain and Ireland shared mitochondrial haplotypes, and our historical data suggest that this is unlikely to be the result of recent hybridization and introgression. These findings, combined with a general lack of documented differences in behaviour and ecology, suggest that Irish red grouse should remain classified as L. lagopus scoticus. At the same time, we found evidence that a significant amount of genetic diversity has been lost from Irish red grouse over the past century, presumably as a result of diminishing population sizes and fragmentation of extant populations. A loss of habitat, combined with the declining numbers and genetic diversity of Irish red grouse, justify their designation as an All-Ireland Priority (Red List) species and a Northern Ireland Priority Species for conservation.  相似文献   

20.
The extent to which a species has declined within its historical range is commonly used as an important criterion in categorizing the conservation status of wild populations. The greater prairie chicken (Tympanuchus cupido) has been extirpated from much of the area it once inhabited. However, within a large part of this area the species is not considered to be native, warranting no recovery effort or special protection. Demographic analysis based on provenance data from 238 specimens from museum collections in addition to genetic analyses of 100 mtDNA sequences suggest this species was native to the northern prairies, extending from central Minnesota to Alberta, Canada. Provenance data from 1879 to 1935 indicate that T. cupido would have required colonization and establishment of populations on an average 11,905 km2 every year, with an estimated per capita growth rate of 8.9% per year. These rates seem unrealistic given the limited dispersal and high mortality rates reported for this species. A survey of mtDNA sequences from “original” and “expanded” ranges revealed no differences in levels of sequence diversity within ranges (π=0.018; SE=0.004) but significant levels of genetic differentiation (F ST=0.034; P=0.013), which suggest that these populations have been relatively isolated for significant evolutionary time periods. DNA mismatch distributions fit a sudden expansion model consistent with a post-Pleistocene expansion of the species, which coincides with the expansion of prairies into the Canadian plains about 9000 years before present. This study demonstrates the value of museum collections as stores of ecological and genetic information fundamental for the conservation of natural populations, and suggests that the current status of the greater prairie chicken should be re-evaluated within all areas where this species may occur, but is now considered non-native.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号