首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro excystation is often used as a measure of viability of encysted protozoan parasites. Parasites that do not excyst in vitro are assumed to be non-viable and non-infectious, whereas those that do excyst are assumed viable. To test the validity of these assumptions, Cryptosporidium parvum oocysts were excysted in vitro using two different excystation protocols, and the non-excysted intact oocysts were isolated using flow cytometry. Non-excysted sorted oocysts readily infected neonatal CD-1 mice. Increasing the duration of the excystation assays from 1 h to 3 h resulted in a higher percent of excysted oocysts, but the remaining non-excysted parasites were still capable of infecting neonatal CD-1 mice. Our results suggest that in vitro excystation is not an accurate measure of the viability or infectious potential of C. parvum oocysts.  相似文献   

2.
An experimental protocol was developed to assess the efficacy of two UV reactors (medium-pressure UVaster), and a low-pressure reactor) on the infectivity of Cryptosporidium parvum oocysts under conditions mimicking small- or medium-size water distribution units. The protocol included purification of large amounts of viable oocysts from experimentally infected calf feces, pilot spiking, sample concentration and purification after UV radiation, oocyst quantification and in vitro evaluation of oocyst infectivity on HCT-8 cells. Water samples were collected at intervals upstream and downstream from the UV reactor after spiking. Oocysts were concentrated by centrifugation, purified by immunomagnetic capture and quantified using laser-scanning cytometry. An enhanced in vitro infectivity test on HCT-8 cells was developed, where oocysts were pretreated in order to obtain maximized in vitro infectivity, and infectious foci were enumerated after immunofluorescence staining after 3 days of culture. This method was superior to viability measured by excystation for assessing oocyst infectivity. The infectivity rate of untreated oocysts ranged between 9% and 30% in replicate experiments. The method allowed us to determine inactivation rates >4.92 (log) with UVaster and >4.82 with the LP reactor after exposition of oocysts to an effective dose of 400 J m(-2) at flow rates of 15 and 42 m(3) h(-1), respectively.  相似文献   

3.
Cryptosporidium parvum oocysts were examined to ascertain excystation requirements and the effects of gamma irradiation. Oocysts and excysted sporozoites were examined for dye permeability and infectivity. Maximum excystation occurred when oocysts were pretreated with acid and incubated with bile salts, and potassium or sodium bicarbonate. Pretreatment with Hanks' balanced salt solution or NaCl lowered excystation; however, this effect was overcome with acid. Sodium ions were replaceable with potassium ions, and sodium bicarbonate was replaceable with sodium phosphate. Oocysts that received 200 krad irradiation excysted at the same rates as nonirradiated oocysts (95%), the excystation rates were lowered (50%) by 2,000 krad, and no excystation was observed by 5,000 krad. No differences were observed between the propidium iodide (PI) permeability of untreated oocysts and oocysts treated with 200 krad, while 92% of oocysts were PI positive after 2,000 krad. Most of the sporozoites exposed to 2,000 krad were not viable as indicated by the dye permeability assay. The oocysts irradiated with 200 and 2,000 krad infected cells, but no replication was observed. The results suggest that gamma-irradiated oocysts may still be capable of excystation and apparent infection; however, because the sporozoites could not reproduce they must not have been viable.  相似文献   

4.
Studies of in vitro excystation of Cryptosporidium parvum from calves   总被引:2,自引:0,他引:2  
Studies of in vitro excystation of Cryptosporidium parvum from calves showed that sporozoite yields were optimum when oocysts were treated with sodium hypochlorite, then incubated at 37 degrees C for 60 min in the presence of taurocholic acid solutions at pH about 7.0. Trypsin was not required for excystation and high concentrations were inhibitory. Studies using protease inhibitors and direct assays for proteolysis failed to implicate proteolytic enzymes as effectors of excystation. The results suggest that Cryptosporidium uses excystation mechanisms that are different from those used by Eimeria spp.  相似文献   

5.
6.
The protozoan parasites Giardia duodenalis and Cryptosporidium parvum are common causes of diarrhoea, worldwide. Effective drug treatment is available for G. duodenalis, but with anecdotal evidence of resistance or reduced compliance. There is no effective specific chemotherapeutic intervention for Cryptosporidium. Recently, there has been renewed interest in the antimicrobial properties of berries and their phenolic compounds but little work has been done on their antiparasitic actions. The effect of various preparations of blueberry (Vaccinium myrtillus) extract on G. duodenalis trophozoites and C. parvum oocysts were investigated. Pressed blueberry extract, a polyphenolic-rich blueberry extract, and a commercially produced blueberry drink (Bouvrage) all demonstrated antigiardial activity. The polyphenol-rich blueberry extract reduced trophozoite viability in a dose dependent manner. At 167 microgml(-1), this extract performed as well as all dilutions of pressed blueberry extract and the Bouvrage beverage (9.6+/-2.8% live trophozoites remaining after 24h incubation). The lowest dilution of blueberry extract tested (12.5% v/v) contained >167 microgml(-1) of polyphenolic compounds suggesting that polyphenols are responsible for the reduced survival of G. duodenalis trophozoites. The pressed blueberry extract, Bouvrage beverage and the polyphenolic-rich blueberry extract increased the spontaneous excystation of C. parvum oocysts at 37 degrees C, compared to controls, but only at a dilution of 50% Bouvrage beverage, equivalent to 213 microgml(-1) gallic acid equivalents in the polyphenolic-rich blueberry extract. Above this level, spontaneous excystation is decreased. We conclude that water soluble extracts of blueberries can kill G. duodenalis trophozoites and modify the morphology of G. duodenalis and C. parvum.  相似文献   

7.
R Fayer 《Applied microbiology》1994,60(8):2732-2735
Cryptosporidium parvum oocysts suspended in 0.5 ml of distilled water were pipetted into plastic vials which were inserted into wells in the heated metal block of a thermal DNA cycler. Block temperatures were set at 5 degrees C incremental temperatures from 60 to 100 degrees C. At each temperature setting four vials containing C. parvum oocysts were placed into wells and held for 15 s before time was recorded as zero, and then pairs of vials were removed 1 and 5 min later. Upon removal, all vials were immediately cooled on crushed ice. Also, at each temperature interval one vial containing 0.5 ml of distilled water was placed in a well and a digital thermometer was used to record the actual water temperature at 30-s intervals. Heated oocyst suspensions as well as unheated control suspensions were orally inoculated by gavage into 7- to 10-day-old BALB/c mouse pups to test for infectivity. At 96 h after inoculation the ileum, cecum, and colon from each mouse were removed and prepared for histology. Tissue sections were examined microscopically. Developmental-stage C. parvum was found in all three gut segments from all mice that received oocysts in unheated water and in water that reached temperatures of 54.4, 59.9, and 67.5 degrees C at 1 min when vials were removed from the heat source. C. parvum was also found in the ileum of one of six mice that received oocysts in water that reached a temperature of 59.7 degrees C at 5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed by using several different isolates of oocysts. Correlation of this assay with viability measured by in vitro excystation was highly statistically significant, with a calculated correlation coefficient of 0.997. In this research, two similar excystation protocols were utilized, and no significant difference between excystation protocols was detected. Percent excystation of oocyst suspensions could be increased or reduced by inclusion of a preincubation treatment in either excystation protocol, and this alteration was also demonstrated in the viability assay. Oocysts which excluded both dyes would not excyst in vitro unless a further trigger was provided and were more resistant to acid or alkali treatment. The results of this research provide a reproducible, user-friendly assay which is applicable to individual oocysts and also provides a useful adjunct for identification of oocysts in water and environmental samples.  相似文献   

9.
A viability assay for oocysts of Cryptosporidium parvum based on the inclusion or exclusion of two fluorogenic vital dyes, 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide, was developed by using several different isolates of oocysts. Correlation of this assay with viability measured by in vitro excystation was highly statistically significant, with a calculated correlation coefficient of 0.997. In this research, two similar excystation protocols were utilized, and no significant difference between excystation protocols was detected. Percent excystation of oocyst suspensions could be increased or reduced by inclusion of a preincubation treatment in either excystation protocol, and this alteration was also demonstrated in the viability assay. Oocysts which excluded both dyes would not excyst in vitro unless a further trigger was provided and were more resistant to acid or alkali treatment. The results of this research provide a reproducible, user-friendly assay which is applicable to individual oocysts and also provides a useful adjunct for identification of oocysts in water and environmental samples.  相似文献   

10.
Several in vitro surrogates have been developed as convenient, user-friendly alternatives to mouse infectivity assays for determining the viability of Cryptosporidium parvum oocysts. Such viability assays have been used increasingly to determine oocyst inactivation following treatment with chemical, physical, or environmental stresses. Defining the relationship between in vitro viability assays and oocyst infectivity in susceptible hosts is critical for determining the significance of existing oocyst inactivation data for these in vitro assays and their suitability in future studies. In this study, four viability assays were compared with mouse infectivity assays, using neonatal CD-1 mice. Studies were conducted in the United States and United Kingdom using fresh (<1 month) or environmentally aged (3 months at 4 degrees C) oocysts, which were partially inactivated by ozonation before viability and/or infectivity analyses. High levels of variability were noted within and between the viability and infectivity assays in the U.S. and United Kingdom studies despite rigorous control over oocyst conditions and disinfection experiments. Based on the viability analysis of oocyst subsamples from each ozonation experiment, SYTO-59 assays demonstrated minimal change in oocyst viability, whereas 4',6'-diamidino-2-phenylindole-propidium iodide assays, in vitro excystation, and SYTO-9 assays showed a marginal reduction in oocyst viability. In contrast, the neonatal mouse infectivity assay demonstrated significantly higher levels of oocyst inactivation in the U.S. and United Kingdom experiments. These comparisons illustrate that four in vitro viability assays cannot be used to reliably predict oocyst inactivation following treatment with low levels of ozone. Neonatal mouse infectivity assays should continue to be regarded as a "gold standard" until suitable alternative viability surrogates are identified for disinfection studies.  相似文献   

11.
Cryptosporidium parvum is a major cause of diarrheal disease in humans and has been identified in 78 other species of mammals. The oocyst stage, excreted in feces of infected humans and animals, has been responsible for recent waterborne outbreaks of human cryptosporidiosis. High temperature and long exposure time have been shown to render oocysts (suspended in water) noninfectious, but for practical purposes, it is important to know if high-temperature--short-time conditions (71.7 degrees C for 15 s) used in commercial pasteurization are sufficient to destroy infectivity of oocysts. In this study, oocysts were suspended in either water or whole milk and heated to 71.7 degrees C for 15, 10, or 5 s in a laboratory-scale pasteurizer. Pasteurized and nonpasteurized (control) oocysts were then tested for the ability to infect infant mice. No mice (0 of 177) given 10(5) oocysts pasteurized for 15, 10, or 5 s in either water or milk were found to be infected with C. parvum on the basis of histologic examination of the terminal ileum. In contrast, all (80 of 80) control mice given nonpasteurized oocysts were heavily infected. These data indicate that high-temperature--short-time pasteurization is sufficient to destroy the infectivity of C. parvum oocysts in water and milk.  相似文献   

12.
13.
Nine liquid disinfectants were tested for their ability to reduce infectivity of Cryptosporidium parvum oocysts in cell culture. A 4-min exposure to 6% hydrogen peroxide and a 13-min exposure to ammonium hydroxide-amended windshield washer fluid reduced infectivity 1,000-fold. Other disinfectants tested (70% ethanol, 37% methanol, 6% sodium hypochlorite, 70% isopropanol, and three commercial disinfectants) did not reduce the infectivity after a 33-min exposure. The results indicate that hydrogen peroxide and windshield washer fluid or ammonium hydroxide disinfectant may be suitable laboratory disinfectants against C. parvum oocysts.  相似文献   

14.
15.
Centrifugation was evaluated as a method to improve infectivity assays of Cryptosporidium parvum in cell culture using the focus detection method, an immunofluorescence-based method for detecting infectious C. parvum oocysts in vitro. Human ileocecal adenocarcinoma (HCT-8) cells were grown for 48 hr on 13-mm cover slips in 24-well microtiter plates and infected with bleach-treated C. parvum oocysts. Plates were centrifuged at 228 g for 10 min and incubated at 37 C for 5, 12, 18, 24, and 48 hr. Foci of infection were stained by immunofluorescence and enumerated using epifluorescent microscopy. Results were compared to noncentrifuged controls. Foci in centrifuged samples could be enumerated after 18 hr. According to most probable number (MPN) analysis, the number of infectious oocysts estimated at 48 hr (13,326 infectious oocysts) was reached by 18 hr in centrifuged samples. After 48 hr, there was no significant difference (P < 0.05) between centrifuged and noncentrifuged samples enumerated by number of foci or the MPN of infectious oocysts. Centrifugation may expedite detection during C. parvum infectivity assays. Furthermore, multiwell plate formats are more cost effective than traditional chamber slides.  相似文献   

16.
Purified oocysts of Cryptosporidium parvum suspended in approximately 400 microliters of phosphate-buffered saline or deionized water in microcentrifuge tubes were exposed at 21 to 23 degrees C for 24 h to a saturated atmosphere of ammonia, carbon monoxide, ethylene oxide, formaldehyde, or methyl bromide gas. Controls were exposed to air. Oocysts in each tube were then rinsed and resuspended in fresh, deionized water, and 1 million oocysts exposed to each gas were orally administered to each of three to six neonatal BALB/c mice in replicate groups. Histologic sections of ileum, cecum, and colon tissues taken from each mouse 72 h after oral administration of oocysts were examined microscopically to determine if infection had been established. All 15 mice given oocysts exposed to carbon monoxide had numerous developmental stages of cryptosporidium in all three intestinal segments. Of 10 mice given oocysts exposed to formaldehyde, 6 had a few developmental stages of cryptosporidium in the ileum. No mice given oocysts exposed to ammonia, ethylene oxide, or methyl bromide were found to be infected. These findings indicate the efficacy of these low-molecular-weight gases (ammonia, ethylene oxide, and methyl bromide) as potential disinfectants for C. parvum oocysts where soil, rooms, buildings, tools, or instruments might be contaminated.  相似文献   

17.
Infectious Cryptosporidium parvum oocysts in final reclaimed effluent   总被引:2,自引:0,他引:2  
Water samples collected throughout several reclamation facilities were analyzed for the presence of infectious Cryptosporidium parvum by the focus detection method-most-probable-number cell culture technique. Results revealed the presence of infectious C. parvum oocysts in 40% of the final disinfected effluent samples. Sampled effluent contained on average seven infectious oocysts per 100 liters. Thus, reclaimed water is not pathogen free but contains infectious C. parvum.  相似文献   

18.
An optimized cell culture immunofluorescence (IFA) procedure, using the HCT-8 cell line, was evaluated in blind trials to determine the sensitivity and reproducibility of measuring the infectivity of flow-cytometry-prepared inocula of Cryptosporidium parvum oocysts. In separate trials, suspensions consisting of between 0% and 100% viable oocysts were prepared at the US Environmental Protection Agency, shipped to the American Water Laboratory, and analyzed blindly by cell culture IFA. Data indicated the control (100% live) oocyst suspensions yielded statistically similar results to cell culture dose-response curve data developed previously at the American Water Laboratory. For test samples containing oocyst suspensions of unknown infectivity, cell culture IFA analyses indicated a high degree of correlation (r2 = 0.89; n = 26) with the values expected by the US Environmental Protection Agency. Cell culture infectivity correlates well with neonatal mouse infectivity assays, and these blind validation trials provide credibility for the cell culture IFA procedure as a cost-effective and expedient alternative to mouse infectivity assays for determining in vitro infectivity of C. parvum oocysts.  相似文献   

19.
Solar radiation reduces Cryptosporidium infectivity. Biofilms grown from stream microbial assemblages inoculated with oocysts were exposed to solar radiation. The infectivity of oocysts attached at the biofilm surface and oocysts suspended in water was about half that of oocysts attached at the base of a 32-μm biofilm.  相似文献   

20.
This study was undertaken to investigate the cryopreservation of Cryptosporidium parvum oocysts. Oocysts purified from mouse feces were suspended in distilled water, 10% glycerin, and 2.5% potassium dichromate. They were stored at -20 C and -80 C for 2, 7, and 30 days, respectively. In addition to the purified oocysts, the feces of C. parvum-infected mice were preserved under the same conditions described above. Purified and fecal oocysts were thawed at 4 C, and their viability was assessed by a nucleic acid stain, excystation test, tissue culture infectivity test, and infectivity to immunosuppressed adult mice. Oocysts purified from fecal material prior to cryopreservation lost most of their viability and all of their infectivity for tissue culture and mice. However, when oocysts were cryopreserved in feces, between 11.7 and 34.0% were judged to be viable and retained their infectivity for mice when stored at -20 C (but not -80 C) for 2, 7, and 30 days. Clearly, fecal material provides a cryoprotective environment for C. parvum oocysts stored at -20 C for at least 30 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号