首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells. DNA synthesis in the mutant decreased progressively after an initial increase during the first 3 h at the restrictive temperature. RNA and protein synthesis increased for 20 h and remained at a high level for 40 h. Cells were arrested in S phase as determined by flow microfluorimetry, and DNA chain elongation was retarded as measured by fiber autoradiography. Infection with polyomavirus did not bypass the defect in cell DNA synthesis, and the mutant did not support virus DNA replication at the restrictive temperature. After shift down to the permissive temperature, cell DNA synthesis was restored whereas virus DNA synthesis was not. Analysis of virus DNA synthesized at the restrictive temperature showed that the synthesis of form I and replicative intermediate DNA decreased concurrently and that the rate of completion of virus DNA molecules remained constant with increasing time at the restrictive temperature. These studies indicated that the mutation inhibited ongoing DNA synthesis at a step early in elongation of nascent chains. The defect in virus and cell DNA synthesis was expressed in vitro. [3H]dTTP incorporation was reduced, consistent with the in vivo data. The addition of a high-salt extract prepared from wild-type 3T3 cells preferentially stimulated the incorporation of [3H]dTTP into the DNA of mutant cells at the restrictive temperature. A similar extract prepared from mutant cells was less effective and was more heat labile as incubation of it at the restrictive temperature for 1 h destroyed its ability to stimulate DNA synthesis in vitro, whereas wild-type extract was not inactivated until incubated at that temperature for 3 h.  相似文献   

2.
ts BN-2 is a temperature-sensitive hamster cell line that is defective in DNA synthesis at the restrictive temperature. The mutant expresses its defect during in vitro replication in whole-cell lysates. Addition of a high-salt-concentration extract from wild-type BHK-21, revertant RBN-2, or CHO cells to mutant cells lysed with 0.01% Brij 58 increased the activity in the mutant three- to fourfold, so that it reached 85% of the control value, and restored replicative synthesis. The presence of extract had an insignificant effect on wild-type and revertant replication and on mutant replication at the permissive temperature. Extract prepared from mutant cells was less effective than the wild-type cell extract was. Also, the stimulatory activity was more heat labile in the mutant than in the wild-type extract. Nuclear extract was as active as whole-cell extract.  相似文献   

3.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

4.
The virulent phage phie of Bacillus subtilis which contains hydroxymethyluracil in its DNA requires host DNA polymerase III for its DNA replication. DNA polymerase III(ts) mutant cells infected with phie at restrictive temperatures do not support phage DNA synthesis. However, phie grows normally both at low and high temperatures in the mutant's parent strain and in spontaneous DNA polymerase III(+) revertants isolated from the mutant strain. Temperature-shift-down experiments with phie-infected cells having thermosensitive DNA polymerase III (pol III(ts)) indicate that at 48 C the thermolabile DNA polymerase III is irreversibly inactivated and has to be synthesized de novo after the shift to 37 C, before phage DNA synthesis can begin. Temperature-shift-up experiments with phie-infected mutant cells show that phage replication is arrested immediately after the temperature shift and indicate that phie requires DNA polymerase III throughout its replication stage.  相似文献   

5.
In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one.  相似文献   

6.
Base excision repair is an important mechanism for correcting DNA damage produced by many physical and chemical agents. We have examined the effects of the REV3 gene and the DNA polymerase genes POL1, POL2, and POL3 of Saccharomyces cerevisiae on DNA repair synthesis is nuclear extracts. Deletional inactivation of REV3 did not affect repair synthesis in the base excision repair pathway. Repair synthesis in nuclear extracts of pol1, pol2, and pol3 temperature-sensitive mutants was normal at permissive temperatures. However, repair synthesis in pol2 nuclear extracts was defective at the restrictive temperature of 37 degrees C and could be complemented by the addition of purified yeast DNA polymerase epsilon. Repair synthesis in pol1 nuclear extracts was proficient at the restrictive temperature unless DNA polymerase alpha was inactivated prior to the initiation of DNA repair. Thermal inactivation of DNA polymerase delta in pol3 nuclear extracts enhanced DNA repair synthesis approximately 2-fold, an effect which could be specifically reversed by the addition of purified yeast DNA polymerase delta to the extract. These results demonstrate that DNA repair synthesis in the yeast base excision repair pathway is catalyzed by DNA polymerase epsilon but is apparently modulated by the presence of DNA polymerases alpha and delta.  相似文献   

7.
DNA replication occurs in various compartments of eukaryotic cells such as the nuclei, mitochondria and chloroplasts, the latter of which is used in plants and algae. Replication appears to be simpler in the mitochondria than in the nucleus where multiple DNA polymerases, which are key enzymes for DNA synthesis, have been characterized. In mammals, only one mitochondrial DNA polymerase (pol γ) has been described to date. However, in the mitochondria of the yeast Saccharomyces cerevisiae, we have found and characterized a second DNA polymerase. To identify this enzyme, several biochemical approaches such as proteinase K treatment of sucrose gradient purified mitochondria, analysis of mitoplasts, electron microscopy and the use of mitochondrial and cytoplasmic markers for immunoblotting demonstrated that this second DNA polymerase is neither a nuclear or cytoplasmic contaminant nor a proteolytic product of pol γ. An improved purification procedure and the use of mass spectrometry allowed us to identify this enzyme as DNA polymerase α. Moreover, tagging DNA polymerase α with a fluorescent probe demonstrated that this enzyme is localized both in the nucleus and in the organelles of intact yeast cells. The presence of two replicative DNA polymerases may shed new light on the mtDNA replication process in S. cerevisiae.  相似文献   

8.
9.
In eukaryotic cells, there is much evidence to indicate that the replication of the mitochondrial genome is carried out by a specific DNA polymerase named DNA polymerase gamma. In theyeast S, cerevisiae, a DNA polymerase gamma has been partially purified and the gene encoding the catalytic subunit identified. The characteristics of this enzyme are the same as those found in higher eukaryotes, except for the requirement for a higher magnesium concentration. During a purification procedure of yeast mitochondrial DNA polymerase, we have isolated a second DNA polymerase activity. Using different approaches we have ruled out the possibility of nuclear contamination oraproductofproteolysis. From its properties, this new DNA polymerase activity seems to be different from any yeast DNA polymerase. This new mitochondrial DNA polymerase activity provides evidence that the animal model of mitochondrial DNA replication cannot be generalized. The presence of two DNA polymerases in yeast mitochondria could reflect a different replication or repair mechanism.  相似文献   

10.
The cytoplasm of Saccharomyces cerevisiae contains two major classes of protein-encapsulated double-stranded ribonucleic acids (dsRNA's), L and M. Replication of L and M dsRNA's was examined in cells arrested in the G1 phase by either alpha-factor, a yeast mating pheromone, or the restrictive temperature for a cell cycle mutant (cdc7). [3H]uracil was added during the arrest periods to cells prelabeled with [14C]uracil, and replication was monitored by determining the ratio of 3H/14C for purified dsRNA's. Like mitochondrial deoxyribonucleic acid, both L and M dsRNA's were synthesized in the G1 arrested cells. The replication of L dsRNA was also examined during the S phase, using cells synchronized in two different ways. Cells containing the cdc7 mutation, treated sequentially with alpha-factor and then the restrictive temperature, enter a synchronous S phase when transferred to permissive temperature. When cells entered the S phase, synthesis of L dsRNA ceased, and little or no synthesis was detected throughout the S phase. Synthesis of L dsRNA was also observed in G1 phase cells isolated from asynchronous cultures by velocity centrifugation. Again, synthesis ceased when cells entered the S phase. These results indicate that L dsRNA replication is under cell cycle control. The control differs from that of mitochondrial deoxyribonucleic acid, which replicates in all phases of the cell cycle, and from that of 2-micron DNA, a multiple-copy plasmid whose replication is confined to the S phase.  相似文献   

11.
Deoxyribonucleic acid (DNA) synthesis was examined in asynchronous and synchronous cultures of a number of cdc (cell division cycle) temperature-sensitive mutant strains. The kinetics of DNA synthesis after a shift to the restrictive temperature was compared with that obtained after inhibition of protein synthesis at the permissive temperature, a condition that specifically blocks the initiation of new rounds of DNA replication, but does not block those in progress. Mutations in three genes (cdc 4, 7, and 28) appear to block a precondition for DNA synthesis since cells carrying these lesions cannot start new rounds of DNA replication after a shift from permissive to restrictive temperature, but can finish rounds that were in progress. These three genes are classified as having roles in the "initiation" of DNA synthesis. Mutations in two genes (cdc 8 and 21) block DNA synthesis, itself, since cells harboring these lesions that had started DNA synthesis at the permissive temperature arrest synthesis abruptly upon a shift to the restrictive temperature. Mutations in 13 other cdc genes do not impair DNA synthesis in the first cell cycle at the restrictive temperature.  相似文献   

12.
Cells of Saccharomyces cerevisiae permeabilized by treatment with ether take up and incorporate exogenous deoxynucleoside triphosphate into deoxyribonucleic acid (DNA). With rho(+) strains, more than 95% of the product was mitochondrial DNA (mtDNA). This report characterizes ether-permeabilized yeast cells and describes studies on the mechanism of mtDNA synthesis with this system. The initial rate of in vitro mtDNA synthesis with one strain (X2180-1Brho(+)) was close to the rate of mtDNA replication in vivo. The extent of synthesis after 45 min was sufficient for the duplication of about 25% of the total mtDNA in the cells. The incorporated radioactivity resulting from in vitro DNA synthesis appeared in fragments that were an average of 30% mitochondrial genome size. Density-labeling experiments showed that continuous strands of at least 7 kilobases after denaturation, and up to 25 kilobase pairs before denaturation, were synthesized by this system. Pulse-chase experiments demonstrated that a large proportion of DNA product after short labeling times appeared in 0.25-kilobase fragments (after denaturation), which served as precursors of high-molecular-weight DNA. It is not yet clear whether the short pieces participate in a mechanism of discontinuous replication similar to that of bacterial and animal cell chromosomal DNA or whether they are related to the rapidly turning over, short initiation sequence of animal cell mtDNA. In rho(0) strains, which lack mtDNA, the initial rate of nuclear DNA synthesis in vitro was 1 to 2% of the average in vivo rate. With temperature-sensitive DNA replication mutants (cdc8), the synthesis of nuclear DNA was temperature sensitive in vitro as well, and in vitro DNA synthesis was blocked in an initiation mutant (cdc7) that was shifted to the restrictive temperature before the ether treatment.  相似文献   

13.
14.
Summary We have isolated new mutants of the yeast Saccharomyces cerevisiae that are defective in mitotic DNA synthesis. This was accomplished by directly screening 1100 newly isolated temperature-sensitive yeast clones for DNA synthesis defects. Ninety-seven different mutant strains were identified. Approximately half had the fast-stop DNA synthesis phenotype; synthesis ceased quickly after shifting an asynchronous population of cells to the restrictive temperature. The other half had an intermediate-rate phenotype; synthesis continued at a reduced rate for at least 3 h at the restrictive temperature. All of the DNA synthesis mutants continued protein synthesis at the restrictivetemperature. Genetic complementation analysis of temperature-sensitive segregants of these strains defined 60 apparently new complementation groups. Thirty-five of these were associated with the fast-stop phenotype, 25 with the intermediate-rate phenotype. The fast-stop groups are likely to include many genes whose products play direct roles in mitotic S phase DNA synthesis. Some of the intermediate-rate groups may be associated with S phase as well. This mutant collection should be very useful in the identification and isolation of gene products necessary for yeast DNA synthesis, in the isolation of the genes themselves, and in further analysis of the DNA replication process in vivo.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, mitochondria form a branched, tubular reticulum in the periphery of the cell. Mmm1p is required to maintain normal mitochondrial shape and in mmm1 mutants mitochondria form large, spherical organelles. To further explore Mmm1p function, we examined the localization of a Mmm1p-green fluorescent protein (GFP) fusion in living cells. We found that Mmm1p-GFP is located in small, punctate structures on the mitochondrial outer membrane, adjacent to a subset of matrix-localized mitochondrial DNA nucleoids. We also found that the temperature-sensitive mmm1-1 mutant was defective in transmission of mitochondrial DNA to daughter cells immediately after the shift to restrictive temperature. Normal mitochondrial nucleoid structure also collapsed at the nonpermissive temperature with similar kinetics. Moreover, we found that mitochondrial inner membrane structure is dramatically disorganized in mmm1 disruption strains. We propose that Mmm1p is part of a connection between the mitochondrial outer and inner membranes, anchoring mitochondrial DNA nucleoids in the matrix.  相似文献   

16.
17.
Ts20 is a temperature-sensitive mutant cell line derived from BALB/3T3 cells that is blocked at a step in DNA synthesis involving chain elongation. Following a shift from 33 degrees to 39 degrees C, mutant cells lost ability to grow or form colonies. When mutant cells were infected with polyomavirus, both cell and virus DNA synthesis were inhibited at the restrictive temperature of 39 degrees C. When cell extracts from wild-type cells were added in vitro to lysed infected mutant cells that had been incubated in vivo at 39 degrees C for expression of the mutation, cell DNA synthesis was increased 3-fold (similar to the effect in uninfected mutant cells), whereas virus DNA synthesis was increased only 60%. With harsher lysis conditions, the effect of added extract on virus DNA synthesis was greater, although baseline DNA synthesis (prior to addition of extracts) was much lower. Analysis by alkaline sucrose gradients showed that the addition of cell extract converted small cellular DNA molecules into larger ones, while it increased the synthesis of small virus DNA molecules rather than completed genomes. Analysis of cytosol extracts (in which the activity stimulating DNA synthesis resides) showed that DNA topo-isomerase I activity was more heat-labile when assayed in mutant extracts compared to wild-type extracts. In contrast, cytosol DNA polymerase activity was equally heat-labile in mutant and wild-type extract. This suggested the factor in extract was likely associated with the activity of DNA topo-isomerase I. Analysis of virus DNA synthesized in vitro in restricted mutant cells by gel electrophoresis and fluorography showed an accumulation of topo-isomers migrating between form I and II. These topo-isomers, thought to be a manifestation of the ts defect, did not disappear when extract from wild-type cells was added back in vitro or when mutant cells were shifted back to permissive temperature prior to lysis for in vitro synthesis. The results indicate that polyoma DNA synthesis and cell DNA synthesis differ in their response to the mutant gene product in ts20, although both are inhibited at a step early in DNA chain elongation that may involve DNA topo-isomerase I.  相似文献   

18.
Summary A single recessive nuclear gene mutation has been isolated from strain 123.1 C of Saccharomyces cerevisiae which is conditionally deficient in mitochondrial DNA metabolism and has been termed tpi. Growth of this mutant strain in media containing galactose at 36°C causes a reduction of mitochondrial DNA synthesis as analyzed by incorporation of radioactive adenine into the mitochondrial DNA. These cells continue to grow and divide producing petite cells which are neutral and have been found to lack mitochondrial DNA as measured by radioactive incorporation of 3H-adenine into the mitochondrial DNA in the presence of cycloheximide at the permissive temperature. The rate of mitochondrial DNA synthesis of the mutant strain grown at the restrictive temperature in dextrose or glycerol containing media was found to be greatly reduced following two hours of exposure to the restrictive temperature. In addition, the action of this mutant gene has been found to be independent of the respiratory capacity of the mutant strain.  相似文献   

19.
The DnaD protein in Gram-positive bacteria is thought to be essential for the initiation step in DNA replication. In the present study, we characterized two Staphylococcus aureus mutants whose temperature-sensitive growth phenotype could be complemented by a plasmid carrying the dnaD gene. These mutants each had a single amino acid substitution in the DnaD protein and showed decreased DNA synthesis at restrictive temperature. Analyses of the origin to terminus ratio by Southern blotting, and of origin numbers per cell by flow cytometry, revealed that, at the restrictive temperature, one mutant continued ongoing DNA replication but failed to initiate DNA replication. The other mutant, in contrast, could not complete ongoing DNA replication and proceeded to degrade the chromosome. However, if protein synthesis was inhibited, the second mutant could complete DNA replication. These results suggest that DnaD protein is necessary not only for the initiation step, but also to avoid replication fork blockage. Moreover, both mutants were sensitive to mitomycin C, a drug that induces DNA damage, suggesting that the DnaD protein is also involved in DNA repair.Communicated by H. Ikeda  相似文献   

20.
A polA12 recA718 double mutant of Escherichia coli, in which DNA polymerase I is temperature sensitive, was unable to maintain normal DNA synthesis or to form colonies on rich media at 42 degrees C. Overproduction of DnaE protein, the polymerizing alpha subunit of DNA polymerase III, restored bacterial DNA replication and cell viability, as well as the PolI-dependent replication of the plasmid carrying dnaE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号