首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tamura M  Shiozaki I  Ono S  Miyano K  Kunihiro S  Sasaki T 《FEBS letters》2007,581(23):4533-4538
p40(phox) activated phagocyte NADPH oxidase without p47(phox) in a cell-free system consisting of p67(phox), Rac and cytochrome b(558) relipidated with phosphatidylinositol 3-phosphate. The activation reached to 70% of that by p47(phox). Addition of p47(phox) slightly increased the activation, but not additively. p40(phox) improved the efficiency of p67(phox) in the activation. The C-terminus-truncated p67(phox), p40(phox)(D289A), p40(phox)(R58A), or p40(phox)(W207R) showed an impaired activation. A peptide corresponding to the p22(phox) Pro-rich region suppressed the activation, and far-western blotting revealed its interaction with p40(phox) SH3 domain. Thus, p40(phox) can substitute for p47(phox) in the activation, interacting with p22(phox) and p67(phox) through their specific regions.  相似文献   

2.
Activation of the phagocyte NADPH oxidase requires the regulatory proteins p47(phox) and p67(phox), each harboring two SH3 domains. p67(phox) interacts with p47(phox) via simultaneous binding of the p67(phox) C-terminal SH3 domain to both the proline-rich region (PRR) of amino acid residues 360-369 and its C-terminally flanking region of p47(phox); the role of the interaction in oxidase regulation has not been fully understood. Here we show that the p47(phox)-p67(phox) interaction is disrupted not only by deletion of the PRR but also by substitution for basic residues in the extra-PRR (K383E/K385E). The substitution impaired oxidase activation partially in vitro and much more profoundly in vivo, indicating the significance of the p47(phox) extra-PRR. Replacement of Ser-379 in the extra-PRR, a residue known to undergo phosphorylation in stimulated cells, by aspartate attenuates the interaction and thus results in a defective superoxide production, suggesting that phosphorylation of Ser-379 is involved in oxidase regulation.  相似文献   

3.
4.
The neutrophil NADPH oxidase is an enzymatic complex involved in innate immunity. Phosphorylation of p47phox promotes its translocation with p67phox and p40phox, followed by membrane interaction and assembly with flavocytochrome b558 into a functional complex. To characterise p47phox conformational changes during activation, we used wild-type and the S303/304/328E triple mutant mimicking the phosphorylated state. Hydrogen/deuterium exchange and limited proteolysis coupled to mass spectrometry were used to discriminate between the various structural models. An increase in deuteration confirmed that p47phox adopts an open and more flexible conformation after activation. Limited proteolysis correlated this change with increased auto-inhibitory region (AIR) accessibility. These results establish a structural link between the AIR release and the exposure of the Phox homology (PX) domain.  相似文献   

5.
Oxidative stress due to enhanced production or reduced scavenging of reactive oxygen species (ROS) has been associated with diet (dyslipidemia) induced obesity and insulin resistance (IR). The present study was undertaken to assess the role of p47phox in IR using wild type (WT) and p47phox?/? mice, fed with different diets (HFD, LFD or Chow). Augmented body weight, glucose intolerance and reduced insulin sensitivity were observed in p47phox?/? mice fed with 45% HFD and 10% LFD. Further, body fat and circulating lipids were increased significantly with 5 weeks LFD feeding in p47phox?/? mice, while parameters of energy homeostasis were reduced as compared with WT mice. LFD fed knockout (KO) mice showed an enhanced hepatic glycogenolysis, and reduced insulin signalling in liver and adipose tissue, while skeletal muscle tissue remained unaffected. A significant increase in hepatic lipids, adiposity, as well as expression of genes regulating lipid synthesis, breakdown and efflux were observed in LFD fed p47phox?/? mice after 5 weeks. On the other hand, mice lacking p47phox demonstrated altered glucose tolerance and tissue insulin sensitivity after 5 weeks chow feeding, while changes in body weight, respiratory exchange ratio (RER) and heat production are non-significant. Our data demonstrate that lack of p47phox is sufficient to induce IR through altered glucose and lipid utilization by the liver and adipose tissue.  相似文献   

6.
Superoxide production by NADPH oxidase is essential for the bactericidal properties of phagocytes. Phosphorylation of p47(phox), one of the cytosolic components of NADPH oxidase, is a crucial step of the oxidase activation. Some evidences suggest that phosphoinositide 3-kinase (PI3K) is involved in p47(phox) phosphorylation, but it has not been fully understood how PI3K regulates it. The aim of this study was to examine the mechanism underlying the PI3K regulation of p47(phox) phosphorylation. Pharmacological inhibition of PI3K attenuated both fMLP-stimulated p47(phox) phosphorylation and NADPH oxidase activity in HL-60 cells differentiated to a neutrophil-like phenotype. Although fMLP elicited Akt activation in a PI3K-dependent manner, an Akt inhibitor had no effect on the oxidase activity triggered by fMLP. In vitro kinase assay revealed that Akt was unable to catalyze p47(phox) phosphorylation. Interestingly, the activation of cPKC and PKCdelta after fMLP stimulation was dependent on PI3K. Furthermore, PI3K inhibitors reduced the activation of phospholipase Cgamma2 without affecting tyrosine phosphorylation on it. These results suggest that PI3K regulates the phosphorylation of NADPH oxidase component p47(phox) by controlling diacylglycerol-dependent PKCs but not Akt.  相似文献   

7.
Abstract

Objectives: Leukocyte NADPH oxidase, which is active in neutrophils, is a membrane-bound enzyme that catalyzes the reduction of oxygen to O2? by using NADPH as an electron donor. Previously, we reported that casein kinase 2 (CK2), a ubiquitous and highly conserved Ser/Thr kinase, is responsible for p47phox phosphorylation and that phosphorylation of p47phox by CK2 regulates the deactivation of NADPH oxidase.

Methods: Here, we report that the residue Cys196 of p47phox is a target of S-nitrosylation by S-nitrosothiol and peroxynitrite and that this modification enhanced phosphorylation of p47phox by CK2. Results: S-Nitrosylated p47phox enhanced CK2 b subunit binding, presumably due to alterations in protein conformation.

Discussion: Taken together, we propose that S-nitrosylation of p47phox regulates the deactivation of NADPH oxidase via enhancement of p47phox phosphorylation by CK2  相似文献   

8.
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial in host defense, requires the cytosolic proteins p67(phox) and p47(phox). They translocate to the membrane upon cell stimulation and activate flavocytochrome b(558), the membrane-integrated catalytic core of this enzyme system. The activators p67(phox) and p47(phox) form a ternary complex together with p40(phox), an adaptor protein with unknown function, comprising the PX/PB2, SH3 and PC motif- containing domains: p40(phox) associates with p67(phox) via binding of the p40(phox) PC motif to the p67(phox) PB1 domain, while p47(phox) directly interacts with p67(phox) but not with p40(phox). Here we show that p40(phox) enhances membrane translocation of p67(phox) and p47(phox) in stimulated cells, which leads to facilitated production of superoxide. The enhancement cannot be elicited by a mutant p40(phox) carrying the D289A substitution in PC or a p67(phox) with the K355A substitution in PB1, each being defective in binding to its respective partner. Thus p40(phox) participates in activation of the phagocyte oxidase by regulating membrane recruitment of p67(phox) and p47(phox) via the PB1-PC interaction with p67(phox).  相似文献   

9.
The phagocyte NADPH oxidase, dormant in resting cells, is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The membrane-integrated protein gp91phox serves as the catalytic core, because it contains a complete electron-transporting apparatus from NADPH to molecular oxygen for superoxide production. Activation of gp91phox requires the cytosolic proteins p67phox, p47phox, and Rac (a small GTPase). p67phox, comprising 526 amino acids, moves upon cell stimulation to the membrane together with p47phox and there interacts with Rac; these processes are prerequisite for gp91phox activation. Here we show that a region of p67phox (amino acids 190–200) C-terminal to the Rac-binding domain is evolutionarily well conserved and participates in oxidase activation at a later stage in conjunction with an activation domain. Alanine substitution for Tyr-198, Leu-199, or Val-204 abrogates the ability of p67phox to support superoxide production by gp91phox-based oxidase as well as its related oxidases Nox1 and Nox3; the activation also involves other invariant residues such as Leu-193, Asp-197, and Gly-200. Intriguingly, replacement of Gln-192 by alanine or that of Tyr-198 by phenylalanine or tryptophan rather enhances superoxide production by gp91phox-based oxidase, suggesting a tuning role for these residues. Furthermore, the Y198A/V204A or L199A/V204A substitution leads to not only a complete loss of the activity of the reconstituted oxidase system but also a significant decrease in p67phox interaction with the gp91phox NADPH-binding domain, although these mutations affect neither the protein integrity nor the Rac binding activity. Thus the extended activation domain of p67phox (amino acids 190–210) containing the D(Y/F)LGK motif plays an essential role in oxidase activation probably by interacting with gp91phox.  相似文献   

10.
Role of the small GTPase Rac in p22phox-dependent NADPH oxidases   总被引:2,自引:0,他引:2  
Miyano K  Sumimoto H 《Biochimie》2007,89(9):1133-1144
The superoxide-producing phagocyte NADPH oxidase gp91(phox)/Nox2 and the non-phagocytic oxidases Nox1 and Nox3 each form a complex in the membrane with p22(phox), which provides both stabilization and a docking site for organizer proteins. The p22(phox)-complexed Nox2 and Nox1 are dormant on their own, and their activation requires soluble supportive proteins such as a Nox organizer (p47(phox) or Noxo1) and a Nox activator (p67(phox) or Noxa1). The small GTPase Rac directly binds to the activators, and thus plays an essential role in the Nox2-based oxidase containing p47(phox) and p67(phox) or a positive role in Nox1 activity supported by Noxo1 and Noxa1. Although Nox3 complexed with p22(phox) constitutively produce superoxide, the production can be enhanced by supportive proteins. Here we compare the roles of Rac in these p22(phox)-dependent oxidases using the organizer and activator in different combinations. Expression of constitutively active Rac1(Q61L) is essential for activation of the Nox2- or Nox1-based oxidase containing the organizer p47(phox) and either p67(phox) or Noxa1. When these oxidases use Noxo1 as an organizer instead of p47(phox), they produce a small but significant amount of superoxide without expression of Rac1(Q61L), although the production is enhanced by Rac1(Q61L). Thus p47(phox) is likely related to strict dependence on Rac. The Nox3-based oxidase has a similar tendency in the change of the dependence: Rac plays a positive role in Nox3 activation in the presence of p47(phox) and either p67(phox) or Noxa1, whereas Rac fails to upregulate Nox3 activity when p47(phox) is replaced with Noxo1. We also demonstrate that, in the Nox3-based oxidase containing solely p67(phox) as supportive protein, expression of Rac1(Q61L) enhances not only superoxide production but also membrane translocation of p67(phox). Since the enhancements are not observed with a mutant p67(phox) defective in binding to Rac, this GTPase appear to directly recruit p67(phox) to the membrane.  相似文献   

11.
Analysis of 2D [13C,1H]-HSQC spectra of biosynthetic fractionally 13C labeled proteins is a reliable, straightforward means to obtain stereospecific assignments of Val and Leu methyl sites in proteins. Herein we show that the same fractionally labeled protein sample facilitates observation and identification of Phe and Tyr aromatic signals. This is the case, in part, because the fractional 13C labeling yields aromatic rings in which some of the 13C-13C J-couplings, present in uniformly labeled samples, are absent. Also, the number of homonuclear J-coupling partners differs for the -, - and -carbons. This enabled us to vary their signal intensities in distinctly different ways by appropriately setting the 13C constant-time period in 2D [13C,1H]-HSQC spectra. We illustrate the application of this approach to an 18 kDa protein, c-VIAF, a modulator of apoptosis. In addition, we show that cancellation of the aromatic 13C CSA and 13C-1H dipolar interactions can be fruitfully utilized in the case of the fractionally labeled sample to obtain high resolution 13C constant-time spectra with good sensitivity.  相似文献   

12.
Taylor RM  Dratz EA  Jesaitis AJ 《Biochimie》2011,93(9):1502-1509
The NADPH oxidase of phagocytic leukocytes generates superoxide that plays a critical role in innate immunity and inflammatory responses. The integral membrane protein flavocytochrome b (Cyt b, a.k.a. cytochrome b558/559) is the catalytic core of the complex and serves as a prototype for homologs important in regulating signaling networks in a wide variety of animal and plant cells. Our analysis identifies a naturally-occurring Tyr72/His72 polymorphism (p.Y72H) in the p22phox subunit of Cyt b at the protein level that has been recognized at the nucleotide level (c.214T > C, formerly C242T) and implicated in cardiovascular disease. In the present study, Cyt b was isolated from human neutrophils and reacted with chemical crosslinkers for subsequent structure analysis by MALDI mass spectrometry. Following mild chemical modification of Cyt b with two pairs of isotopically-differentiated lysine crosslinkers: BS2G-d0/d4 and BS3-d0/d4, the reaction mixtures were digested with trypsin and purified on C18ZipTips to generate samples for mass analysis. MALDI analysis of tryptic digests from each of the above reactions revealed a series of masses that could be assigned to p22phox residues 68-85, assuming an intra-molecular crosslink between Lys71 and Lys78. In addition to the 30 ppm mass accuracy obtained with internal mass calibration, increased confidence in the assignment of the crosslinks was provided by the presence of the diagnostic mass patterns resulting from the isotopically-differentiated crosslinking reagent pairs and the Tyr72/His72 p22phox polymorphisms in the crosslinked peptides. This work identifies a novel, low-resolution distance constraint in p22phox and suggests that the medically-relevant p.Y72H polymorphism has an invariant structural motif in this region. Because position 72 in p22phox lies outside regions identified as interactive with other oxidase components, the structural invariance also provides additional support for maturational differences as the source of the wide variation in observed reactive oxygen species production by cells expressing p.Y72H.  相似文献   

13.
To establish whether NADPH oxidase activation, responsible for previously demonstrated Trichinella spiralis-induced respiratory burst, results from assembling of membrane and cytosolic NADPH oxidase components and/or increased expression of the oxidase complex proteins, the superoxide anion production and expression of the regulatory p47(phox) subunit were measured in cultured alveolar macrophages obtained during T. spiralis infection of guinea pigs. The results demonstrate for the first time helminth parasite-infection-induced stimulation of NADPH oxidase p47(phox) subunit protein expression, with the effect being decreased by in vivo treatment with cyclosporin A, previously shown to inhibit T. spiralis infection-induced respiratory burst in guinea-pig alveolar macrophages. However, although the expression of the p47(phox) subunit protein remained induced during secondary infection, it was accompanied by superoxide anion production that was significantly suppressed in comparison with that observed during primary infection, suggesting suppressive action of T. spiralis on host's alveolar macrophage immune response, presumably connected with NADPH oxidase complex activity attenuation.  相似文献   

14.
15.
16.
NADPH oxidase organizer 1 (Noxo1), harboring a PX domain, two SH3 domains, and a proline-rich region (PRR), participates in activation of superoxide-producing Nox-family NADPH oxidases. Here, we show that Noxo1 supports superoxide production in a cell-free system for gp91(phox)/Nox2 activation by arachidonic acid. This lipid enhances an SH3-mediated binding of Noxo1 to p22(phox), a protein complexed with Nox oxidases; the binding is known to be required for Nox activation. We also demonstrate that the bis-SH3 domain directly interacts with the Noxo1 PRR. The interaction appears to prevent the bis-SH3 domain and PRR from binding to their target proteins; disruption of the intramolecular interaction facilitates Noxo1 binding to p22(phox) and also allows the PRR to associate with the Nox activator Noxa1, which association is crucial for Nox activation as well. These findings suggest that Nox activation involves a conformational change leading to disruption of the bis-SH3-PRR interaction in Noxo1.  相似文献   

17.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

18.
Gene duplications in rodents have given rise to a family of proteases that are expressed exclusively in placenta. To define the biological role of these enzymes specific inhibitors are needed to differentiate their activities from other more ubiquitously expressed proteases, such as cathepsins B and L. Libraries of peptidyl inhibitors based upon a 4-cyclohexanone pharmacophore were screened for inhibition of cathepsins P, L, and B. The tightest binding dipeptidyl inhibitor for cathepsin P contained Tyr in P(2) and Trp in P(2)('), consistent with the specificity of this enzyme for hydrophobic amino acids at these sites in synthetic substrates. An inhibitor containing Trp in both P(2) and P(2)(') provided better discrimination between cathepsin P and cathepsins B and L. Extension of the inhibitors to include P(3), and P(3)(') amino acids identified an inhibitor with Trp in P(2), P(2)('), and P(3), and Phe in P(3)(') that bound to cathepsin P with a K(i) of 32 nM. This specificity for inhibitors with hydrophobic aromatic amino acids in these four positions is unique among the lysosomal cysteine proteases. This inhibitor bound to cathepsin P an order of magnitude tighter than to mouse and human cathepsin L and two orders of magnitude tighter than to human cathepsin B. Cbz-Trp-Trp-4-cyclohexanone-Trp-Phe-OMe can discriminate cathepsin P from cathepsins B and L and consequently can be used to specifically inhibit and identify cathepsin P in cellular systems.  相似文献   

19.
Ratiometric fluorescent probes based on 3-hydroxyflavone (3HF) are highly sensitive tools for studying polarity, hydration, electronic polarizability, and electrostatics in different microheterogeneous systems, including protein molecules. In the present work, a reactive derivative of 3HF, 6-bromomethyl-4'-diethylamino-3-hydroxyflavone, recently synthesized in our group, was applied to label covalently bovine lens alpha-crystallin. The labeling of SH and NH(2) groups are clearly distinguished by spectroscopic criteria. We observe that the NH(2) labeling creates the positive charge in the proximity to fluorophore, which results in strong internal Stark effect producing the shift in excitation spectrum by ca. 15 nm. Analysis of excitation-dependent fluorescence spectra allows separation of the emission profiles of these SH- and NH(2)-labeled species. Applying recently developed multiparametric analysis of the obtained emission spectra, we described the physicochemical properties of the sites of SH and NH(2) labeling in alpha-crystallin. The site of SH labeling has medium-low polarity (dielectric constant, epsilon = 4.9 +/- 0.9) is protic, and does not contain proximal aromatic residues (according to the obtained refractive index, n = 1.41 +/- 0.14). The site of NH(2) labeling is also of medium-low polarity. The novel label due to its two-wavelength ratiometric response and high sensitivity to the type of labeling may offer new possibilities in the studies of structure, dynamics, and interactions of proteins by probing their SH- and NH(2)-labeling sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号