首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Over 13 months, 465 beavers, foxes, muskrats, otters, and raccoons were trapped in four counties in eastern Maryland and examined by molecular methods for microsporidia. A two-step nested PCR protocol was developed to amplify a 392-bp fragment of the internal transcribed spacer region of the rRNA gene of Enterocytozoon spp., with the use of primers complementary to the conserved regions of published nucleotide sequences. Fifty-nine PCR-positive samples were sequenced. Multiple alignments of these sequences identified 17 genotypes of Enterocytozoon spp. (WL1 to WL17); of these, 15 have not been reported before. Most of the genotypes were found in multiple species of wildlife and belonged to a major group consisting of all the previously described Enterocytozoon bieneusi genotypes from human and domestic animals. Some of the isolates from muskrats and raccoons formed two distinct groups. Results of this study indicate that fur-bearing mammals, especially those closely associated with surface water, can be a potential source of human-pathogenic E. bieneusi. However, there are also host-adapted Enterocytozoon genotypes in wildlife, which may represent species different from E. bieneusi and have no apparent public health significance. This is the first report of E. bieneusi in wildlife.  相似文献   

2.
Thus far, genotyping of Enterocytozoon bieneusi has been based solely on DNA sequence analysis of the internal transcribed spacer (ITS) of the rRNA gene. Both host-adapted and zoonotic (human-pathogenic) genotypes of E. bieneusi have been identified. In this study, we searched for microsatellite and minisatellite sequences in the whole-genome sequence database of E. bieneusi isolate H348. Seven potential targets (MS1 to MS7) were identified. Testing of the seven targets by PCR using two human-pathogenic E. bieneusi genotypes (A and Peru10) led to the selection of four targets (MS1, MS3, MS4, and MS7). Further analysis of the four loci with an additional 24 specimens of both host-adapted and zoonotic E. bieneusi genotypes indicated that most host-adapted genotypes were not amplified by PCR targeting these loci. In contrast, 10 or 11 of the 13 specimens of the zoonotic genotypes were amplified by PCR at each locus. Altogether, 12, 8, 7, and 11 genotypes of were identified at MS1, MS3, MS4, and MS7, respectively. Phylogenetic analysis of the nucleotide sequences obtained produced a genetic relationship that was similar to the one at the ITS locus, with the formation of a large group of zoonotic genotypes that included most E. bieneusi genotypes in humans. Thus, a multilocus sequence typing tool was developed for high-resolution genotyping of E. bieneusi. Data obtained in the study should also have implications for understanding the taxonomy of Enterocytozoon spp., the public health significance of E. bieneusi in animals, and the sources of human E. bieneusi infections.  相似文献   

3.
The use of molecular diagnostic tools in epidemiological investigations of Cryptosporidium, Giardia, and Enterocytozoon has provided new insights into their diversity and transmission pathways. In this study, 157 stool specimens from 2-month to 70-year-old patients were collected, a polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis of the small subunit (SSU) rRNA gene was used to detect and differentiate Cryptosporidium species, and DNA sequence analysis of the 60 kDa glycoprotein (gp60) gene was used to subtype Cryptosporidium hominis and Cryptosporidium parvum. Giardia duodenalis, and Enterocytozoon bieneusi in the specimens were detected using PCR and sequence analysis of the triosephosphate isomerase (tpi) gene and internal transcribed spacer (ITS), respectively. C. hominis and C. parvum were found in two (1.3%) and one (0.6%) specimen respectively, comprising of Ia and IIe (with 8 nucleotide substitutions) subtype families. The G. duodenalis A2 subtype was detected in five (3.2%) specimens, while four genotypes of E. bieneusi, namely A, type IV, D and WL7 were found in 10 (6.4%) specimens. Children aged two years or younger had the highest occurrence of Cryptosporidium (4.4%) and Enterocytozoon (13.0%) while children of 6 to 17 years had the highest Giardia infection rate (40.0%). No Cryptosporidium, Giardia, and Enterocytozoon were detected in patients older than 60 years. Enterocytozoon had high infection rates in both HIV-positive (3.3%) and HIV-negative (8.3%) patients. Results of the study suggest that anthroponotic transmission may be important in the transmission of Cryptosporidium spp. and G. duodenalis while zoonotic transmissions may also play a role in the transmission of E. bieneusi in humans in Kaduna State, Nigeria.  相似文献   

4.
The microsporidian species Enterocytozoon bieneusi had emerged as opportunistic pathogen in AIDS patients causing chronic diarrhoea and was found with high prevalences in faeces of asymptomatic pigs. Analysis of the ribosomal RNA gene internal transcribed spacer (rDNA ITS) had revealed that nine distinct but closely related genotypes occur in humans and in swine. Using primers that were designed to be specific for E. bieneusi, we obtained amplicons from the faecal samples of one from twelve cats and from three out of 36 farm dogs. Sequence analysis of the rDNA ITS, which is part of the diagnostic PCR product, revealed that the isolate from the cat is very closely related to the E. bieneusi genotypes of human or swine origin. The corresponding sequence of all three dog-derived isolates were identical among each other and had a sequence similarity to known sequences of only 47.6-48.2%. In addition, part of the small subunit rRNA gene was amplified and sequenced from one dog-derived isolate revealing a similarity to known sequences of human-derived E. bieneusi of 96-98%. Enterocytozoon-like spores could be detected by light microscopy in one canine sample. Together with recent reports of detection of Enterocytozoon in environmental samples, our findings suggest that microsporidia of the genus. Enterocytozoon seem to be ubiquitous and consist of many genotypes in various naturally infected animal species.  相似文献   

5.
The reservoirs and the routes of transmission of Enterocytozoon bieneusi are still unknown. In humans, it is the most commonly found microsporidial species. It has also been found repeatedly in pigs, too. The first detection of E. bieneusi in cattle is reported herein. Two distinct genotypes were characterized and compared with 4 other genotypes from humans, 6 from pigs, and 1 from a cat. From these 13 E. bieneusi genotypes known to date, 25 polymorphic sites could be identified in the internal transcribed spacer of the rRNA gene. The spectrum of polymorphisms within and between each of the 4 host species indicates a close relationship between E. bieneusi strains from humans and pigs, whereas those from cattle are more distantly related. The data suggest the absence of a transmission barrier between pigs and humans for this pathogen.  相似文献   

6.
ABSTRACT. A cross-sectional study was conducted to examine the genotype distribution of Enterocytozoon bieneusi in HIV-infected patients who visited two government hospitals in Lima, Peru from January 2000 through March 2003. Microsporidia were detected by microscopy in 105 (3.9%) of 2,672 patients. A total of 212 stool samples from 89 microsporidia-positive patients were genotyped by sequence analysis of the internal transcribed spacer (ITS) region of the rRNA gene. A 392-bp fragment containing the complete ITS region was amplified and sequenced. Multiple alignments and phylogenetic analysis of these ITS sequences identified 11 distinct genotypes of E. bieneusi (Peru-1 to Peru-11), 6 of which were new genotypes not reported before. The remaining 5 genotypes had nucleotide sequences identical to those previously reported in humans, cats, pigs, and wild mammals. All the 11 E. bieneusi-genotypes identified are genetically related, and members of the group have been previously found in humans, domestic animals, and some wild mammals. Thus, there is a high genetic diversity of E. bieneusi in humans in Peru, and zoonotie transmission is possible if humans are in close contact with infected animals.  相似文献   

7.
8.
Microsporidia are known opportunistic microorganisms and usually transmitted via the fecal–oral route. However, there is no information about human‐infecting microsporidia in wildlife in Iran. This study aimed to investigate and analyze human‐infecting microsporidia isolated from raccoons in north of Iran. Totally, 30 fecal samples were collected; then, DNA extraction was performed and specific fragments of the SSU rRNA gene of Enterocytozoon bieneusi and Encephalitozoon species were amplified. After amplification and sequencing the ITS, the results were compared to the GenBank database. Phylogenetic trees and network analysis were employed to explore probable relationships. E. bieneusi was the only detected microsporidia among samples. Genotyping showed the genotypes D, E, and RA in 15/18 (83.33%), 1/18 (5.55%), and 2/18 (11.11%) of samples, respectively. Novel genotypes RA1 and RA2 grouped together and apart from other genotypes. E. bieneusi genotypes D and E clustered with the genotypes previously reported from animals, humans, and environmental samples. Network analysis revealed six distinct sequence types among raccoon's isolates. This study demonstrated that E. bieneusi genotype D was the most prevalent microsporidia among raccoons. It seems that wildlife may play a role in dispersion of microsporidia spores.  相似文献   

9.
The microsporidian species Enterocytozoon bieneusi is a major cause of chronic diarrhea and malabsorption in patients with AIDS. Genotyping was performed on seven E. bieneusi strains for the first time in Tunisia. All the strains were isolated from stool samples of humans with immunodeficiency virus (HIV) infection. Analysis of the ribosomal RNA gene internal transcribed spacer (rDNA ITS) allowed the identification of three distinct genotypes previously described in other studies. Genotypes D and B were characterized in four and two respectively. The Peruvian genotype (Peru 8) was detected in the last isolate. These results indicate a genetic diversity in E. bieneusi strains from HIV Tunisian patients and suggest the coexistence of both zoonotic and anthroponotic route of transmission.  相似文献   

10.
To assess the host specificity of Enterocytozoon bieneusi and to track the sources of E. bieneusi contamination, we genotyped E. bieneusi in wildlife and stormwater from the watershed of New York City''s source water, using ribosomal internal transcribed spacer (ITS)-based PCR and sequence analyses. A total of 255 specimens from 23 species of wild mammals and 67 samples from stormwater were analyzed. Seventy-four (29.0%) of the wildlife specimens and 39 (58.2%) of the stormwater samples from streams were PCR positive. Altogether, 20 E. bieneusi genotypes were found, including 8 known genotypes and 12 new ones. Sixteen and five of the genotypes were seen in animals and stormwater from the watershed, respectively, with WL4 being the most common genotype in both animals (35 samples) and stormwater (23 samples). The 20 E. bieneusi genotypes belonged to five genogroups (groups 1, 3, 4, and 7 and an outlier), with only 23/113 (20.4%) E. bieneusi-positive samples belonging to zoonotic genogroup 1 and 3/20 genotypes ever being detected in humans. The two genogroups previously considered host specific, groups 3 and 4, were both detected in multiple groups of mammals. Thus, with the exception of the type IV, Peru11, and D genotypes, which were detected in only 7, 5, and 2 animals, respectively, most E. bieneusi strains in most wildlife samples and all stormwater samples in the watershed had no known public health significance, as these types have not previously been detected in humans. The role of different species of wild mammals in the contribution of E. bieneusi contamination in stormwater was supported by determinations of host-adapted Cryptosporidium species/genotypes in the same water samples. Data from this study indicate that the host specificity of E. bieneusi group 3 is broader than originally thought, and wildlife is the main source of E. bieneusi in stormwater in the watershed.  相似文献   

11.
Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are common gastrointestinal protists in humans and animals. Two hundred and three fecal specimens from 80 wildlife species were collected in Zhengzhou Zoo and their genomic DNA extracted. Three intestinal pathogens were characterized with a DNA sequence analysis of different loci. Cryptosporidium felis, C. baileyi, and avian genotype III were identified in three specimens (1.5%), the manul, red‐crowned crane, and cockatiel, respectively. Giardia duodenalis was also found in five specimens (2.5%) firstly: assemblage B in a white‐cheeked gibbon and beaver, and assemblage F in a Chinese leopard and two Siberian tigers, respectively. Thirteen genotypes of E. bieneusi (seven previously reported genotypes and six new genotypes) were detected in 32 specimens (15.8%), of which most were reported for the first time. A phylogenetic analysis of E. bieneusi showed that five genotypes (three known and two new) clustered in group 1; three known genotypes clustered in group 2; one known genotype clustered in group 4; and the remaining four genotypes clustered in a new group. In conclusion, zoonotic Cryptosporidium spp., G. duodenalis, and E. bieneusi are maintained in wildlife and transmitted between them. Zoonotic disease outbreaks of these infectious agents possibly originate in wildlife reservoirs.  相似文献   

12.
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi.  相似文献   

13.
AIMS: Microsporidia have become widely recognized as important human pathogens. Among Microsporidia, Enterocytozoon bieneusi is responsible for severe gastrointestinal disease. To date, no current therapy has been proven effective. Their mode of transmission and environmental occurrence are poorly documented because of the lack of detection methods that are both species-specific and sensitive. In this study, we developed a sensitive and specific molecular method to detect E. bieneusi spores in water samples. METHODS AND RESULTS: The molecular assay combined immunomagnetic separation (IMS) and polymerase chain reaction (PCR) amplification to detect E. bieneusi spores. A comparison was made of IMS magnetic beads coated with two different monoclonal antibodies, one specific for the Encephalitozoon genus that cross-reacts with E. bieneusi and the other specific only for the E. bieneusi species itself. CONCLUSIONS: Immunotech beads coated with the antibody specific for E. bieneusi were found to be the most effective combination. SIGNIFICANCE AND IMPACT OF THE STUDY: The highly specific IMS-PCR assay developed in this study provides a rapid and sensitive means of screening water samples for the presence of E. bieneusi spores.  相似文献   

14.
Faecal samples taken from eight underweight, approximately 5-week-old broiler chickens in a poultry abattoir were investigated for microsporidial infections by light microscopy, electron microscopy, and PCR. In two of six chickens, which were suspected of being infected with microsporidia by light microscopy, Enterocytozoon bieneusi (genotype 'J') was detected by PCR and DNA sequencing, and in one of the two PCR-positive samples by extensive electron microscopy. This is the first time that E. bieneusi has been detected in chickens, i.e. in a non-mammalian species.  相似文献   

15.
Enterocytozoon bieneusi was detected in 24 of 83 samples from birds of the orders Columbiformes, Passeriformes, and Psittaciformes. It was identical to or closely related to the Peru6 genotype, which was previously found in humans in Peru. Thus, various birds can be a significant source of environmental contamination by potentially human-pathogenic E. bieneusi.  相似文献   

16.
Despite a white‐tailed deer (WTD) population in the United States of approximately 32 million animals extremely little is known of the prevalence and species of the protists that infect these animals. This study was undertaken to determine the presence of potential human protist pathogens in culled WTD in central Maryland. Feces from fawns to adults were examined by molecular methods. The prevalence of Enterocytozoon bieneusi, Cryptosporidium, and Giardia was determined by PCR. All PCR‐positive specimens were sequenced to determine the species and genotype(s). Of specimens from 80 WTD, 26 (32.5%) contained 17 genotypes of E. bieneusi. Four genotypes were previously reported (I, J, WL4, LW1) and 13 novel genotypes were identified and named DeerEb1‐DeerEb13. Genotypes I, J, and LW1 are known to infect humans. Ten (12.5%) specimens contained the Cryptosporidium deer genotype, and one (1.25%) contained Giardia duodenalis Assemblage A. The identification zoonotic G. duodenalis Assemblage A as well as four E. bieneusi genotypes previously identified in humans suggest that WTD could play a role in the transmission of those parasites to humans.  相似文献   

17.
Human microsporidian infections have emerged following the onset of the AIDS pandemic. Microsporidia are unicellular eukaryotic parasites that form spores. They are an exceptionally diverse group of parasites that infect a wide range of eukaryotic cells in numerous invertebrate and vertebrate hosts. Of the 14 species newly described as pathogens in human, Enterocytozoon bieneusi, which causes gastrointestinal diseases, is the most common agent of human infections. In the past fifteen years, E. bieneusi was also identified in environmental sources, especially in surface water, as well as in wild, domestic and farm animals. These findings raised concerns for waterborne, foodborne and zoonotic transmission. Molecular analyses of the 243-bp internal Transcribed spacer-(ITS) of the rRNA gene have revealed a considerable genetic variation within E. bieneusi isolates of human and animal origins, supporting the potential for zoonotic transmission. The focus of this revue is to present and discuss recent advances in diagnosis and zoonotic potential of E. bieneusi infections.  相似文献   

18.
Enterocytozoon bieneusi is the most common and clinically significant microsporidium associated with chronic diarrhea and wasting in immunocompromised humans. Albendazole, which is effective against several helminths, protozoa, and microsporidia, is relatively ineffective against infections due to E. bieneusi. A likely explanation for the observed clinical resistance to albendazole was discovered from sequence analysis of the E. bieneusibeta-tubulin from isolates from an infected human and a naturally infected rhesus macaque. The beta-tubulin of E. bieneusi has a substitution at Glu(198), which is one of six amino acids reported to be associated with benzimidazole sensitivity.  相似文献   

19.
Slaughterhouse pig samples were analyzed by PCR for Enterocytozoon bieneusi infection. Thirty-two percent were found to be positive, with rates being higher over the summer months. Three isolates from pigs were identical in their ribosomal internal transcribed spacer sequence to human E. bieneusi type D, two were identical to type F (from a pig), and nine were previously unreported. The viability of these spores was demonstrated by their ability to infect gnotobiotic piglets. The presence of the infection in liver was shown by in situ hybridization.  相似文献   

20.
ABSTRACT. A retrospective phylogenetic analysis was performed on isolates of Enterocytozoon bieneusi to characterize the genotypes in different patient cohorts. Fifty-seven isolates, collected from patients living in Malawi and the Netherlands, were classified by age and immune status of the hosts. Sequence analysis of the internal transcribed spacer (ITS) region identified 16 genotypes; nine have not previously been described. Genotypes K and D were most prevalent among patient groups, whereas genotype C was restricted to transplantation patients receiving immunosupressives and genotype B showed a predisposition toward patients living with HIV/AIDS. Different genotypes showed more dispersion among isolates from Malawi compared with those from the Netherlands. A constructed map estimating the genealogy of the ITS region reveals a dynamic evolutionary process between the genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号