首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is an increasing need for proper quality control tools in the pre-analytical phase of the molecular diagnostic workflow. The aim of the present study was to identify biomarkers for monitoring pre-analytical mRNA quality variations in two different types of blood collection tubes, K2EDTA (EDTA) tubes and PAXgene Blood RNA Tubes (PAXgene tubes). These tubes are extensively used both in the diagnostic setting as well as for research biobank samples. Blood specimens collected in the two different blood collection tubes were stored for varying times at different temperatures, and microarray analysis was performed on resultant extracted RNA. A large set of potential mRNA quality biomarkers for monitoring post-phlebotomy gene expression changes and mRNA degradation in blood was identified. qPCR assays for the potential biomarkers and a set of relevant reference genes were generated and used to pre-validate a sub-set of the selected biomarkers. The assay precision of the potential qPCR based biomarkers was determined, and a final validation of the selected quality biomarkers using the developed qPCR assays and blood samples from 60 healthy additional subjects was performed. In total, four mRNA quality biomarkers (USP32, LMNA, FOSB, TNRFSF10C) were successfully validated. We suggest here the use of these blood mRNA quality biomarkers for validating an experimental pre-analytical workflow. These biomarkers were further evaluated in the 2nd ring trial of the SPIDIA-RNA Program which demonstrated that these biomarkers can be used as quality control tools for mRNA analyses from blood samples.  相似文献   

2.
M13 filamentous bacteriophage has been used in displaying disease-specific antibodies, biomarkers, and peptides. One of the major drawbacks of using phage in diagnostic assays is the aspecific adsorption of proteins leading to a high background signal and decreasing sensitivity. To deal with this, we developed a genetically pure, exchangeable dual-display phage system in which biomarkers and streptavidin-binding protein (SBP) are displayed at opposite ends of the phage. This approach allows for sample purification, using streptavidin-coated magnetic beads resulting in a higher sensitivity of signal detection assays. Our dual-display cassette system approach also allows for easy exchange of both the anchor protein (SBP) and the displayed biomarker. The presented principle is applied for the detection of antibody reactivity against UH-RA.21 which is a good candidate biomarker for rheumatoid arthritis (RA). The applicability of dual-display phage preparation using a helper plasmid system is demonstrated, and its increased sensitivity in phage ELISA assays using patient serum samples is shown.  相似文献   

3.
To enable the early diagnosis of pancreatic cancer, the search for and definition of reliable biomarkers remain a subject of great interest, with the specificity and sensitivity of the currently used biomarkers being below the required values. We tested a novel diagnostic approach for pancreatic cancer based on the specific molecular signature of blood plasma components. To acquire more detailed structural information, structure‐sensitive chiroptical methods (electronic circular dichroism and Raman optical activity) were supplemented by conventional Raman and infrared spectroscopies. The obtained spectra were subsequently processed by linear discriminant analysis yielding high values of specificity and sensitivity. In addition, to monitor not only large biomolecules as potential biomarkers but also those of low molecular weight, we conducted an analysis of blood plasma samples by using metabolomics. The achieved results suggest a panel of promising biomarkers for a reliable detection of pancreatic cancer.  相似文献   

4.
Monocytes are circulating macrophage and dendritic cell precursors that populate healthy and diseased tissue. In humans, monocytes consist of at least two subsets whose proportions in the blood fluctuate in response to coronary artery disease, sepsis, and viral infection. Animal studies have shown that specific shifts in the monocyte subset repertoire either exacerbate or attenuate disease, suggesting a role for monocyte subsets as biomarkers and therapeutic targets. Assays are therefore needed that can selectively and rapidly enumerate monocytes and their subsets. This study shows that two major human monocyte subsets express similar levels of the receptor for macrophage colony stimulating factor (MCSFR) but differ in their phagocytic capacity. We exploit these properties and custom-engineer magnetic nanoparticles for ex vivo sensing of monocytes and their subsets. We present a two-dimensional enumerative mathematical model that simultaneously reports number and proportion of monocyte subsets in a small volume of human blood. Using a recently described diagnostic magnetic resonance (DMR) chip with 1 µl sample size and high throughput capabilities, we then show that application of the model accurately quantifies subset fluctuations that occur in patients with atherosclerosis.  相似文献   

5.
Saliva diagnostics utilizing nanotechnology and molecular technologies to detect oral squamous cell carcinoma (OSCC) has become an attractive field of study. However, no specific methods have been established. To refine the diagnostic power of saliva peptide fingerprints for the early detection of OSCC, we screened the expression spectrum of salivary peptides in 40 T1 stage OSCC patients (and healthy controls) using MALDI-TOF-MS combined with magnetic beads. Fifty proteins showed significantly different expression levels in the OSCC samples (P<0.05). Potential biomarkers were also predicted. The novel diagnostic proteomic model with m/z peaks of 1285.6 Da and 1432.2 Da are of certain value for early diagnosis of OSCC.  相似文献   

6.
In recent years, Prostate Specific Antigen (PSA) testing is widespread and has been associated with deceased mortality rates; however, this testing has raised concerns of overdiagnosis and overtreatment. It is clear that additional biomarkers are required. To identify these biomarkers, we have undertaken proteomics and metabolomics expression profiles of serum samples from BPH, Gleason score 5 and 7 using two-dimensional difference in gel electrophoresis (2D-DIGE) and nuclear magnetic resonance spectroscopy (NMR). Panels of serum protein biomarkers were identified by applying Random Forests to the 2D-DIGE data. The evaluation of selected biomarker panels has shown that they can provide higher prediction accuracy than the current diagnostic standard. With careful validation of these serum biomarker panels, these panels may potentially help to reduce unnecessary invasive diagnostic procedures and more accurately direct the urologist to curative surgery.  相似文献   

7.
Early diagnosis and treatment is known to improve prognosis for nasopharyngeal carcinoma (NPC). The study determined the specific peptide profiles by comparing the serum differences between NPC patients and healthy controls, and provided the basis for the diagnostic model and identification of specific biomarkers of NPC. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) can be used to detect the molecular mass of peptides. Mass spectra of peptides were generated after extracting and purification of 40 NPC samples in the training set, 21 in the single center validation set and 99 in the multicenter validation set using weak cationic‐exchanger magnetic beads. The spectra were analyzed statistically using FlexAnalysis? and ClinProt? bioinformatics software. The four most significant peaks were selected out to train a genetic algorithm model to diagnose NPC. The diagnostic sensitivity and specificity were 100% and 100% in the training set, 90.5% and 88.9% in the single center validation set, 91.9% and 83.3% in the multicenter validation set, and the false positive rate (FPR) and false negative rate (FNR) were obviously lower in the NPC group (FPR, 16.7%; FNR, 8.1%) than in the other cancer group (FPR, 39%; FNR, 61%), respectively. So, the diagnostic model including four peptides can be suitable for NPC but not for other cancers. FGA peptide fragments identified may serve as tumor‐associated biomarkers for NPC. J. Cell. Biochem. 113: 2268–2278, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The value of salivary biomarkers for diagnostic and prognostic assessments has become increasingly well established in medicine, pharmacology, and dentistry. Certain salivary components mirror the neuro-endocrine status of the organism. Other saliva products are protein in nature, and can serve to reflect immune surveillance processes. The autonomic nervous system regulates the process of salivation, and the concentration of yet other salivary components, such as alpha-amylase, which provide a reliable outcome measure of the sympathetic response. Here, we discuss molecular technologies that have permitted giant steps in the utilization of salivary samples and micro-fluidics for the benefit of diagnostic medicine and dentistry, and their putative role in springing forward research in psychobiology.  相似文献   

9.
目的:利用表面增强激光解吸电离飞行时间质谱技术(SELDI-TOF-MS)筛选慢性阻塞性肺疾病(COPD)血清特异标志物。方法:应用SELDI-TOF-MS技术检测30例COPD稳定期患者和30例健康对照者血清蛋白指纹图谱,采用Biomarker pattern软件进行分析,建立COPD的诊断模型。结果:COPD患者血清蛋白图谱与对照组相比,在相对分子质量2000-15 000范围内共检测到75个蛋白峰,发现19个有统计学差异的蛋白峰(P0.05)。通过对COPD组与对照组间的数据作进一步分析,经BPS软件分析,建立质荷比(M/Z)3 167、4 645的差异蛋白组成的诊断模型,其诊断敏感度为96.67%,特异度为96.67%。结论:SELDI-TOF-MS技术是一种快速、简单易行、用量少和高通量的分析方法。能直接筛选出COPD血清中特异表达标志物,用特异表达标志物建立的诊断模型能有效区分COPD患者与健康对照者,有望成为COPD诊断的辅助指标。  相似文献   

10.
The diagnostic of Amyotrophic lateral sclerosis (ALS) remains based on clinical and neurophysiological observations. The actual delay between the onset of the symptoms and diagnosis is about 1 year, preventing early inclusion of patients into clinical trials and early care of the disease. Therefore, finding biomarkers with high sensitivity and specificity remains urgent. In our study, we looked for peptide biomarkers in plasma samples using reverse phase magnetic beads (C18 and C8) and MALDI-TOF mass spectrometry analysis. From a set of ALS patients (n=30) and healthy age-matched controls (n=30), C18- or C8-SVM-based models for ALS diagnostic were constructed on the base of the minimum of the most discriminant peaks. These two SVM-based models end up in excellent separations between the 2 groups of patients (recognition capability overall classes > 97%) and classify blinded samples (10 ALS and 10 healthy age-matched controls) with very high sensitivities and specificities (>90%). Some of these discriminant peaks have been identified by Mass Spectrometry (MS) analyses and correspond to (or are fragments of) major plasma proteins, partly linked to the blood coagulation.  相似文献   

11.
Disease biomarkers play critical roles in the management of various pathological conditions of diseases. This involves diagnosing diseases, predicting disease progression and monitoring the efficacy of treatment modalities. While efforts to identify specific disease biomarkers using a variety of technologies has increased the number of biomarkers or augmented information about them, the effective use of disease-specific biomarkers is still scarce. Here, we report that a high expression of protein tyrosine kinase 7 (PTK7), a transmembrane receptor protein tyrosine kinase-like molecule, was discovered in a series of leukemia cell lines using whole cell aptamer selection. With the implementation of a two-step strategy (aptamer selection and biomarker discovery), combined with mass spectrometry, PTK7 was ultimately identified as a potential biomarker for T-cell acute lymphoblastic leukemia (T-ALL). Specifically, the aptamers for T-ALL cells were selected using the cell-SELEX process, without any prior knowledge of the cell biomarker population, conjugated with magnetic beads and then used to capture and purify their binding targets on the leukemia cell surface. This demonstrates that a panel of molecular aptamers can be easily generated for a specific type of diseased cells. It further demonstrates that this two-step strategy, that is, first selecting cancer cell-specific aptamers and then identifying their binding target proteins, has major clinical implications in that the technique promises to substantially improve the overall effectiveness of biomarker discovery. Specifically, our strategy will enable efficient discovery of new malignancy-related biomarkers, facilitate the development of diagnostic tools and therapeutic approaches to cancer, and markedly improve our understanding of cancer biology.  相似文献   

12.
用表面加强激光解析电离飞行时间质谱(SELDI-TOF-MS)和蛋白质芯片检测子宫内膜异位症(endometriosis,EM)患者血清蛋白质指纹图谱,探讨诊断模型在EM诊断中的临床应用价值。用SELDI-TOF-MS技术和H4蛋白质芯片检测16例EM和16例正常女性的血清蛋白质指纹图谱,并建立诊断模型。然后,对16名健康人和16例EM患者样本进行盲法测试验证该模型。筛选出4个有明显表达差异的蛋白质,其质荷比(m/z)分别为8141、6096、5894、3269。建立的诊断模型对EM检测的灵敏度为87.5%(14/16),特异性为93.75%(15/16),总准确率为90.625%(29/32)。SELDI-TOF-MS对小样本的EM诊断具有较高的敏感性和特异性,在EM的诊断及标志物筛选等方面具有较好的诊断价值。  相似文献   

13.
Kuramitsu Y  Nakamura K 《Proteomics》2006,6(20):5650-5661
Lung, gastric, colorectal, pancreatic, and esophageal cancers, as well as hepatocellular carcinoma (HCC), were the six most common and highly fatal cancers for Japanese men in Japan in 2003, while for women uterine cervical cancer could also be added to this list. To identify diagnostic or therapeutic biomarkers for these cancers, investigators are nowadays performing proteomic analyses of cancer tissues and cells, and revealing a large number of molecules which are diagnostic, prognostic and informative of carcinogenesis. From reports of proteomic analyses of cancerous tissues and noncancerous tissues sampled from HCC, and pancreatic, esophageal, gastric, colorectal, lung and uterine cervical cancers, we classified the proteins into digestive enzymes, growth factors, cell adhesion molecules, calcium-binding proteins, proteases, protease inhibitors, transporter proteins, structural molecules, apoptosis inhibitor, molecular chaperone, as well as proteins related to cell growth, cell differentiation, cell transformation, tumor invasion, carcinogen metabolism, and others. The aim of this study was to understand carcinogenesis of major cancers from a proteomics perspective using samples from cancer patients, and to elucidate their tumor biomarkers.  相似文献   

14.
CS Wu  CJ Yen  RH Chou  ST Li  WC Huang  CT Ren  CY Wu  YL Yu 《PloS one》2012,7(7):e39466
Hepatocellular carcinoma (HCC) is one of the most common human malignancies. Therefore, developing the early, high-sensitivity diagnostic biomarkers to prevent HCC is urgently needed. Serum a-fetoprotein (AFP), the clinical biomarker in current use, is elevated in only ~60% of patients with HCC; therefore, identification of additional biomarkers is expected to have a significant impact on public health. In this study, we used glycan microarray analysis to explore the potential diagnostic value of several cancer-associated carbohydrate antigens (CACAs) as biomarkers for HCC. We used glycan microarray analysis with 58 different glycan analogs for quantitative comparison of 593 human serum samples (293 HCC samples; 133 chronic hepatitis B virus (HBV) infection samples, 134 chronic hepatitis C virus (HCV) infection samples, and 33 healthy donor samples) to explore the diagnostic possibility of serum antibody changes as biomarkers for HCC. Serum concentrations of anti-disialosyl galactosyl globoside (DSGG), anti-fucosyl GM1 and anti-Gb2 were significantly higher in patients with HCC than in chronic HBV infection individuals not in chronic HCV infection patients. Overall, in our study population, the biomarker candidates DSGG, fucosyl GM1 and Gb2 of CACAs achieved better predictive sensitivity than AFP. We identified potential biomarkers suitable for early detection of HCC. Glycan microarray analysis provides a powerful tool for high-sensitivity and high-throughput detection of serum antibodies against CACAs, which may be valuable serum biomarkers for the early detection of persons at high risk for HCC.  相似文献   

15.
Lung cancer is the number one cause of cancer death; however, no specific serum biomarker is available till date for detection of early lung cancer. Despite good initial response to chemotherapy, small-cell lung cancer (SCLC) has a poor prognosis. Therefore, it is important to identify molecular markers that might influence survival and may serve as potential therapeutic targets. The review aims to summarize the current knowledge of serum biomarkers in SCLC to improve diagnostic efficiency in the detection of tumor progression in lung cancer. The current knowledge on the known serum cytokines and tumor biomarkers of SCLC is emphasized. Recent findings in the search for novel diagnostic and therapeutic molecular markers using the emerging genomic technology for detecting lung cancer are also described. It is believed that implementing these new research techniques will facilitate and improve early detection, prognostication and better treatment of SCLC.  相似文献   

16.
A central challenge of medical imaging studies is to extract biomarkers that characterize disease pathology or outcomes. Modern automated approaches have found tremendous success in high-resolution, high-quality magnetic resonance images. These methods, however, may not translate to low-resolution images acquired on magnetic resonance imaging (MRI) scanners with lower magnetic field strength. In low-resource settings where low-field scanners are more common and there is a shortage of radiologists to manually interpret MRI scans, it is critical to develop automated methods that can augment or replace manual interpretation, while accommodating reduced image quality. We present a fully automated framework for translating radiological diagnostic criteria into image-based biomarkers, inspired by a project in which children with cerebral malaria (CM) were imaged using low-field 0.35 Tesla MRI. We integrate multiatlas label fusion, which leverages high-resolution images from another sample as prior spatial information, with parametric Gaussian hidden Markov models based on image intensities, to create a robust method for determining ventricular cerebrospinal fluid volume. We also propose normalized image intensity and texture measurements to determine the loss of gray-to-white matter tissue differentiation and sulcal effacement. These integrated biomarkers have excellent classification performance for determining severe brain swelling due to CM.  相似文献   

17.
Saliva diagnostics has become an attractive field utilizing nanotechnology and molecular technologies for pSS (primary Sjögren''s syndrome). However, no specific methods have been established. To refine the diagnostic power of the saliva peptide finger print for the early detection of pSS, we screened the expression spectrum of salivary peptides in pSS patients by using mass spectrometry MALDI-TOF-MS (matrix-assisted laser-desorption ionization-time-of-flight MS) combined with magnetic bead. The present study was comprised 12 pSS patients and 13 healthy controls and broken down to two different phases. In the initial ‘exploratory phase’, we enrolled seven pSS patients with eight age- and sex-matched healthy volunteers. Proteomics analysis of the unstimulated salivary samples was conducted to generate proportional peptide mass fingerprints. A diagnostic model was established. The testing cohort of the second ‘validation phase’ was represented by five pSS patients and five age- and sex-matched healthy controls. The diagnostic power of this diagnostic panel was then validated. The results showed seven m/z (mass-to-charge) ratio peaks with significant differences. Five peptides were up-regulated and two down-regulated in the pSS patients compared with matched healthy subjects. In the validation phase, four out of five pSS patients were diagnosed as pSS, and four of the five healthy controls were diagnosed as healthy controls, respectively. Potential biomarkers were also primarily predicted. The novel diagnostic proteomic model with m/z peaks 1068.1 Da, 1196.2 Da, 1738.4 Da, 3375.3 Da, 3429.3 Da, 3449.7 Da and 3490.6 Da is of certain value for early diagnosis of pSS.  相似文献   

18.
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000-5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273-283, FIBA 5-16, and LBN 306-313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens.  相似文献   

19.
Blood is a convenient source of biomarkers. Readily obtainable, it immerses most tissues in the body and is therefore likely to contain cell-derived proteins and peptides that may provide information about various biological processes. Serum proteome and peptidome profiling--using mass spectrometry (MS), for example--may thus show a functional correlate of biological events and disorders. To this end, serum peptides must be enriched and interfering substances removed: a step that should be automated to a degree, reproducible and free of bias if it is to generate a test with any future diagnostic potential. The current protocol allows simultaneous analysis of large numbers of peptides using reversed-phase, magnetic particle-assisted sample processing with a matrix-assisted laser desorption/ionization-time of flight MS readout. It may be used for diagnostic or predictive purposes, specifically as an in vitro readout of proteolytic activities with qualitative and quantitative product analysis, and enables profiling of 96 samples in less than 27 h.  相似文献   

20.
The accurate diagnosis of endometrial cancer (EC) holds great promise for improving its treatment choice and prognosis prediction. This work aimed to identify diagnostic biomarkers for differentiating EC tumors from tumors in other tissues, as well as prognostic signatures for predicting survival in EC patients. We identified 48 tissue-specific markers using a cohort of genome-wide methylation data from three common gynecological tumors and their corresponding normal tissues. A diagnostic classifier was constructed based on these 48 CpG markers that could predict cancerous versus normal tissue with an overall correct rate of 98.3% in the entire repository. Fifteen CpG markers associated with the overall survival (OS) and development of EC were also identified based on the methylation patterns of the EC samples. A prognostic model that aggregated these prognostic CpG markers was established and shown to have a higher discriminative ability to distinguish EC patients with an elevated risk of mortality than the FIGO staging system and several other clinical prognostic variables. This study presents the utility of DNA methylation in identifying biomarkers for the diagnosis and prognosis of EC and will help improve our understanding of the underlying mechanisms involved in the development of EC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号