首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3H-Labelled opiate and enkephalin ligands appear to bind with highest affinity to a single site responsible for their analgesic properties. Administered in vivo, naloxazone, an irreversible opiate, selectively inhibits for over 24 hours the high affinity binding of 3H-labelled mu, and kappa opiates and enkephalins. This inhibition of binding gradually resolves over 3 days, perhaps correlating with receptor turnover. Naloxazone treatment also abolishes morphine, D-ala2-met5-enkephalinamide and betah-endorphin analgesia. Although morphine and D-ala2-met5-enkephalinamide bind with similar potencies to the high affinity site, morphine's potency for the low affinity D-ala2-met5-enkephalinamide site is far less than the enkephalin analog. These results imply that all 3H-ligands examined bind with highest affinity to a mu-like receptor while low affinity D-ala2-met5-enkephalinamide binding, with a KD of 6 nM, represents a delta-like receptor.  相似文献   

2.
The interaction of metkephamid (Tyr-D-Ala-Gly-Phe-N(Me)Met-NH2) with 3H-dihydromorphine and 3H-D-Ala2-D-Leu5-enkephalin binding has been examined in rat brain homogenates. Displacements of both 3H-ligands by metkephamid indicate that metkephamid interacts competitively with greatest potency to the high affinity binding component for both ligands (mu1 site). Unlike most enkephalins and opiates, metkephamid binds equipotently to both morphine-selective (mu2) and enkephalin-selective (delta) binding sites. Metkephamid is differentiated from morphine by its better than 12-fold higher affinity for the delta receptor. Blockade of the high affinity (mu1) binding in vivo with high doses of naloxazone dramatically reduces metkephamid's analgesic potency.  相似文献   

3.
Analgesic activities of morphiceptin, β-casomorphins, [D-Ala2, D-Leu5] enkephalin and Sandoz peptide, FK 33–824, were examined by intracerebroventricular administration in rats. Their relative potencies in vivo were compared with their receptor binding activities. The receptor binding affinities were determined from the competition curves against [3H]naloxone binding in the absence and presence of sodium ions for morphine (μ) receptors and against 125I-[D-Ala2, D-Leu5] enkephalin binding for enkephalin (δ) receptors. A good correlation between analgesic activity and morphine (μ) receptor but not enkephin (δ) receptor binding affinity was obtained. These data extend the hypothesis that morphine (δ) receptors mediate the major portion of the analgesic activity of opioids.  相似文献   

4.
A radioiodinated form of the highly potent enkephalin analog FK 33-824 has been characterized with respect to its binding properties in vitro. 125I-FK 33-824 is distinctive among the short opioid peptides in three ways. First, 125I-FK 33-824 binds stereospecifically to rat brain homogenates with very high affinity (Kd = 0.42 nM). Secondly, dissociation of the 125l-labelled peptide from membrane-bound opiate receptors occurs with a relatively long τ12 of 25 min at 4° in contrast to other enkephalins which dissociate more rapidly. Third, competitive binding analyses reveal that the 125l-FK 33-824 binds equally well to both enkephalin (δ) and morphine (μ) classes of opiate receptors. These characteristics distinguish the 125l-labelled peptide as a particularly suitable probe for molecular studies and purification of the opiate receptor.  相似文献   

5.
The binding characteristics of the delta opioid receptor ligand, 3HDAla2DLeu5 enkephalin, were markedly altered in brains obtained from mice fed an ethanol-containing diet for five days. Control mice exhibited both a high and low affinity site for 3HDAla2DLeu5 enkephalin, whereas those consuming the ethanol diet were found to possess only one binding site. This singular site has an intermediate KD value with an increase in receptor number when compared to the high and low affinity sites observed in control mice. The invitro addition of ethanol to a brain membrane preparation obtained from untreated mice, at a concentration equivalent to that found in the blood of the ethanol-treated mice, did not markedly affect DAla2DLeu5 enkephalin binding characteristics. No alteration in the binding characteristics of 3H-naloxone, a mu receptor ligand, was noted following five days of ethanol consumption. Mice maintained on the ethanol-containing diet were tolerant to the activity-stimulating effects of acute ethanol administration. These results suggest that mice consuming an ethanol diet in sufficient quantities to render them tolerant exhibit a specific loss of a 3HDAla2DLeu5 enkephalin binding site, while the binding of 3H-naloxone was unchanged.  相似文献   

6.
Y Sarne  A Kenner 《Life sciences》1987,41(5):555-562
Displacement from brain membranes of labeled opiates by low concentrations of enkephalins and of labeled enkephalins by low concentrations of opiates has been previously explained by the existence of a common high affinity site termed mu-1. An alternative interpretation of the same results is that the trough seen in the low concentration zone of the displacement curves represents cross binding of mu and delta opioid ligands to delta and mu receptors, respectively. In three sets of experiments with brain membranes, the size of the trough is shown to be dependent on the labeled ligand used: The ratio between the size of troughs seen with [3H]D-Ala, D-Leu enkephalin and with [3H]morphine varies with experimental conditions (storage of membranes at 4 degrees C for 72 h), with ratio of mu:delta receptors (e.g. in thalamus and cortex which are enriched in mu and delta sites, respectively) and with pretreatment of membranes with naloxonazine. These results can not be explained by a common high affinity site, but rather by binding of [3H]D-Ala, D-Leu enkephalin to mu and of [3H]morphine to delta opioid receptors.  相似文献   

7.
The interactions of putative mu and delta selective ligands with [3H]D-ala2-D-leu5 enkephalin (DADLE) binding to mouse brain membranes were investigated. Computerized curve fitting of displacement curves performed at three different concentrations of 3H-DADLE indicated that a one site competitive model was sufficient to explain the interactions of leu-enkephalin (LE) and D-ser2-thr6-leucine enkephalin with 3H-DADLE binding. Similar experiments with morphine and morphiceptin were unique in that the multiple displacement curves crossed over one another. A two-site competitive model was required to adequately describe the interactions of these mu selective ligands with 3H-DADLE. This two-site model was one in which the inhibitor had higher affinity for the site labeled with lower affinity by 3H-DADLE. However, this two site model did not correctly predict the interaction of LE with 3H-DADLE in the presence of morphiceptin. These data indicate that: 1) putative mu and delta selective ligands do not bind to a common high affinity site; 2) mu selective ligands are not simple mixed inhibitors of a single site labeled by 3H-DADLE; and 3) competitive binding models may not explain the interaction of mu ligands with 3H-DADLE binding.  相似文献   

8.
Four analogs of oxymorphone, oxymorphaminoethylthiol, oxymorphamino-ethyldisulfide, oxymorphaminoethyl-nitrobenzoic acid disulfide and oxymorphone thiazolidine, as well as the enkephalin analogs, enkephalin-thiol, Tyr-D-Ala-Gly-Phe-Leu-Lys(?-NH)COCH2CH2SH and the enkephalin-dimer, [Tyr-D-Ala-Gly-Phe-Leu-Lys(?-NH)COCH2CH2S-]2, were examined for binding to enkephalin and morphine receptors. The analogs gained substantial affinity for enkephalin and lost affinity for morphine receptors. The affinity of the dimers of both opiates and enkephalins was slightly greater than that achieved by the corresponding thiol monomers. However, in the guinea pig ileum the dimeric analogs were much more active than the monomers. Receptor dimerization or cross-linking may be involved in the biological activity of opiates and opioid peptides.  相似文献   

9.
The effects of opiates on dopamine (DA) release and synthesis were assessed in the mouse striatum in vivo by simultaneously measuring 3,4-dihydroxyphenylalanine (DOPA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after inhibition of aromatic amino acid decarboxylase. This method was developed to assess stimulus-coupled changes in DA synthesis and release. Peripheral injections of morphine and intraventrcular injections of D-Ala2-Leu5-enkephalin elevated DOPAC levels, indicating that “opiates” stimulated DA release. Concomitantly, the rate of DA synthesis was increased. The effects were dose-dependent, saturable and antagonized by naloxone. When morphine and the enkephalin analog were given together in saturating doses, the effects of the two agents were not additive. Thus, the involvement of different receptors in the mediation of the effects of morphine and enkephalins could not be demonstrated.  相似文献   

10.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

11.
Scatchard analyses of [125I]D-ala2-D-leu5-enkephalin binding in rat brain membranes are curvilinear, suggesting low and high affinity sites. Treating the membranes with naloxazone abolishes the high affinity binding with slight effect on low affinity binding. Displacement of [125I]-D-ala2-D-leu5-enkephalin binding by morphine in untreated membranes is biphasic. Displacement by morphine in naloxazone-treated tissue is monophasic, with no inhibition by low concentrations of morphine. Naloxazone treatment has little effect on displacements by unlabeled D-ala2-D-leu5-enkephalin. Binding in N4TG1 neuroblastoma cells, which demonstrates a linear Scatchard plot with single affinity constant similar to that of the low affinity binding in brain, is less sensitive to naloxazone's actions. Naloxazone treatment in vivo inhibits D-ala2-D-leu5-enkephalin analgesia.  相似文献   

12.
Conformational similarities between morphine and the enkephalin analogue Tyr-D-Ala-Gly-Phe which interact preferentially with opiate μ-receptors were investigated using a constrained energy minimization procedure. This method takes into account several structural features of morphine-like substances including enkephalin analogues and uses them to search for conformations of peptides exhibiting low energies and good similarity with the μ-opiate pharmacophore. This latter involves as critical components the A-ring, the N-atom of D-ring and the D6-O2 bond is morphine which correspond to the N-terminal tyrosine moiety and the Gly3-CO group in Tyr-D-Ala-Gly-Phe respectively. Several low energy conformers present a good similarity with rigid opiates and are consistent with activity of sterically constrained enkephalins. Conformational changes of peptides from solid or solvated states to μ-receptors bound state involve a transconformational binding process.  相似文献   

13.
Based on non-competitive binding interactions we suggested that mu and delta receptors associate as a mu/delta receptor complex in rat brain. We hypothesized that the same non-competitive binding interactions observed in rat brain will be seen in CHO cells that co-express mu and delta receptors, but not in cells that express just mu or delta receptors. We used CHO cells expressing the cloned human mu receptor, cloned human delta receptor, or cloned mouse delta/human mu ("dimer cell"). Cell membranes were prepared from intact cells pretreated with 100nM SUPERFIT. [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding assays followed published procedures. SUPERFIT, a delta-selective irreversible ligand, decreased [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to delta receptors by approximately 75% and to mu receptors by approximately 50% in dimer cells. SUPERFIT treatment did not decrease [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to mu cells. The IC(50) values observed in SUPERFIT-treated dimer cells were: [d-Pen(2),d-Pen(5)]enkephalin (1820nM) and morphine (171nM). Saturation binding experiments with SUPERFIT-treated dimer cells showed that [d-Pen(2),d-Pen(5)]enkephalin (5000nM) was a competitive inhibitor. In contrast, morphine (1000nM) lowered the B(max) from 1944fmol/mg to 1276fmol/mg protein (35% decrease). Both [d-Pen(2),d-Pen(5)]enkephalin and morphine competitively inhibited [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to SUPERFIT-treated mu cells. The results indicate that the mu-delta opioid receptor complex defined on the basis of non-competitive binding interactions in rat brain over 20 years ago likely occurs as a consequence of the formation of mu-delta heterodimers. SUPERFIT-treated dimer cells may provide a useful model to study the properties of mu-delta heterodimers.  相似文献   

14.
H Y Meltzer  R So 《Life sciences》1979,25(6):531-535
The ability of morphine, leu-enkephalin and β-endorphin to antagonize the binding of 3H-spiroperidol to bovine anterior pituitary membranes was studied. All three drugs were virtually inactive despite their ability to stimulate prolactin secretion invivo and the reported ability of morphine to antagonize the inhibitory effect of dopamine on prolactin release from rat hemi-pituitaries. These results suggest that opiates do not produce their direct effect on prolactin secreation at the pituitary level through an effect on the 3H-spiroperidol binding site. The opiates may antagonize the effect of dopamine at a component of the dopamine receptor which is independent of the 3H-spiroperidol binding site, or the opiates may stimulate prolactin secretion by an effect on the lactotrophes which is independent of dopamine.  相似文献   

15.
Utilizing the mouse tail-flick assay, the rank order of analgesic potency for various opioids (i.c.v.) is beta h-endorphin greater than D-Ala2-D-Leu5-enkephalin greater than morphine greater than D-Ala2-met-enkephalinamide much greater than met-enkephalin much greater than leu-enkephalin. Assuming mu receptor mediation of analgesia, there is an affinity and analgesic potency (ie: D-Ala2-Leu5-enkephalin has 1/7 the affinity of morphine for the mu receptor but is 18X more potent as an analgesic). Additionally, sub-analgesic doses of various opioid peptides have opposite effects on analgesic responses. Leu-enkephalin, D-Ala2-D-Leu5-enkephalin or beta h-endorphin potentiate morphine or D-Ala2-met-enkephalinamide analgesia whereas met-enkephalin or D-Ala2-met-enkephalinamide antagonize opioid-induced analgesia. Using the enkephalins as the prototypic delta ligands (100 fold selective) and based on their effects on analgesia, we suggest that Leu-enkephalin-like peptides interact with the delta receptor as an "agonist" to facilitate and met-enkephalin-like peptides as an "antagonist" to attenuate analgesia. Given the biochemical evidence of a coupling between mu and delta receptors, we suggest that the mechanism of facilitation or attenuation of analgesia by the enkephalins is a direct in vivo consequence of this coupling. Further, the analgesic potencies of various opioid ligands can be better correlated to the combination of their simultaneous occupancy of mu and delta receptors.  相似文献   

16.
The sigma opiates differ from other opiates in their stimulatory and psychotomimetic actions. The sigma opiate [3H](-)-SKF-10,047 has been used to characterize sigma receptors in rat nervous tissue. Binding of [3H](-)-SKF-10,047 to rat brain membranes was of high affinity, saturable, and reversible. Scatchard analysis revealed the apparent interaction of this drug with two distinct binding sites characterized by affinities of 0.03 and 75 nM (5 mM Tris-HCl buffer, pH 7.4, at 4 degrees C). Competition analyses involving rank order determinations for a series of opiates and other drugs indicate that the high-affinity binding site is the mu opiate receptor. The lower-affinity site (revealed after suppression of mu and delta receptor binding) has been identified as the sigma opiate/phencyclidine receptor. In vitro autoradiography has been used to visualize neuroanatomical patterns of receptors labeled using [3H](-)-SKF-10,047 in the presence of normorphine and [D-Ala2,D-Leu5]enkephalin to block mu and delta interactions, respectively. Labeling patterns differ markedly from those for mu, delta, or kappa receptors. The highest densities (determined by quantitative autoradiography) are found in the medial portion of the nucleus accumbens, amygdaloid nucleus, hippocampal formation, central gray, locus coeruleus, and the parabrachial nuclei. Receptors in these structures could account for the stimulatory, mood-altering, and analgesic properties of the sigma opiates. Although not the most selective sigma opiate ligand, [3H](-)-SKF-10,047 binds to sigma opiate receptors in brain, and this interaction can be readily distinguished from its interactions with other classes of brain opiate receptors.  相似文献   

17.
The pentapeptide leucine enkephalin induced down-regulation of enkephalin receptors in neuroblastoma-glioma NG108-15 hybrid cells in a reversible fashion, whereas the stable enkephalin analogue, d-Ala2-Met-enkephalinamide (AMEA), and the potent opiate alkaloid, etorphine, had a prolonged effect. The opiate alkaloid, morphine, which has low affinity to δ-type enkephalin receptors of these cells did not induce down-regulation, whereas AMEA decreased the binding of both opiate agonists and antagonists but had no effect on the binding of the α2-adrenergic ligand, [3H]yohimbine. From several experiments that were designed to remove the tightly bound AMEA, and from experiments with solubilized receptor we ruled out the possibility that the decreased binding capacity of enkephalin-treated cells reflects only receptor masking. The study suggests that down-regulation of enkephalin receptors that may also occur in vivo can account for some of the abnormal physiological responses of subjects treated chromically with opiates. However, since opiates from the morphine type can induce opiate tolerance in vivo, but not down-regulation of enkephalin receptors in the cultured cells, we suggest that down-regulation of δ-type opiate receptors may not be prerequisite for the development of the physiological tolerance/dependence on these alkaloids.  相似文献   

18.
We have studied the receptor binding activities of C-terminal free and amidated enkephalins with and without the dehydrophenylalanine4 residue. For the selective labeling of so-called δ and μ opiate receptors, specific tracers were used at low concentrations in rat brain membranes and neuroblastoma cells containing pure δ receptors. C-Terminal free enkephalins are five to eight times more potent in the assay for δ receptors than in μ assay, while the amides are almost equipotent in both assays. The presence of a C-terminal carboxyl group is a determining factor for selective activity. [D-Ala2, ΔPhe4, Met5]-enkephalin amide is very potent in all of the binding assays examined, and, in particular, twice as active as the saturated amide and the C-terminal free enkephalin in the δ assay. We suggest that the steric arrangement of the dehydrophenylalanine residue in position 4 is very important to the enhanced interaction with the δ receptors.  相似文献   

19.
Abstract: High-affinity μ-opioid receptors have been solubilized from 7315c cell membranes. Occupancy of the membrane-associated receptors with morphine before their solubilization in the detergent 3-[(3-cholamidopropyl) dimethyl]-1-propane sulfonate was critical for stabilization of the receptor. The solubilized opioid receptor bound [3H]-etorphine with high affinity (KD= 0.304 ± 0.06 nM; Bmax= 154 ± 33 fmol/mg of protein). Of the membrane-associated [3H]etorphine binding sites, 40 ± 5% were recovered in the solubilized fraction. Both μ-selective and non-selective enkephalins competed with [3H]etorphine for the solubilized binding sites; in contrast, 5- and K-opioid enkephalins failed to compete with [3H]etorphine for the solubilized binding sites at concentrations of <1 μM.The μ-selective ligand [3H][D-Ala2,A/-Me-Phe4,Gly5-ol]enkephalin also bound with high affinity (KD= 0.79 rM; Bmax= 108±17 fmol/mg of protein) to the solubilized material. Of the membrane-associated [3H][D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin binding sites, 43 ± 3% were recovered in the solubilized material. Guanosine 5′-O-(3-thiotriphosphate), GTP, and guanosine 5′-O-(2-thiodiphosphate), but not adenylylimidodiphosphate, diminished [3H][D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin binding in a concentration-dependent manner. Finally, μ-opioid receptors from rat brain membranes were also solubilized in a high-affinity, guanine nucleotide-sensitive state if membrane-associated receptors were occupied with morphine before and during their solubilization with the detergent 3-[(3-cholamidopropyl) dimethyl]-1-propane sulfonate.  相似文献   

20.
Large quantities of NaCl and CaCl2 but not KCl given intrapertoneally decreased the antinociceptive activity of morphine. NaCl also antagonized the effect of morphine on the stereo-specific binding of opiates. This high dose of NaCl doubled the level of sodium in the brain but did not alter the specific gravity of brain tissue. These invivo effects of NaCl confirm the antagonistic effects of NaCl invitro that have been reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号