首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The compensatory changes of carbohydrate metabolism induced by fasting were investigated in frugivorous bats, Artibeus lituratus and Artibeus jamaicensis. For this purpose, plasma levels of glucose and lactate, liver and muscle glycogen content, rates of liver gluconeogenesis and the activity of related enzymes were determined in male bats. After a decrease during the first 48 h of fasting, plasma glucose levels remained constant until the end of the experimental period. Plasma lactate levels, extremely high in fed bats, decreased after 48 h of fasting. Similarly, liver glycogen content, markedly high in fed animals, was reduced to low levels after 24 h without food. Muscle glycogen was also reduced in fasted bats. The expected increase in liver gluconeogenesis during fasting was observed after 48 h of fasting. The activities of liver glucose-6-phosphatase and fructose-1,6-bisphosphatase were not affected by food withdrawn. On the other hand, fasting for 24 h induced an increase in the activity of liver cytosolic phosphoenolpyruvate carboxykinase. The data indicate that liver gluconeogenesis has an important role in the glucose homeostasis in frugivorous bats during prolonged periods of food deprivation. During short periods of fasting liver glycogenolysis seems to be the main responsible for the maintenance of glycemia.  相似文献   

2.
In this study, we tested the efficacy of increasing liver glycogen synthase to improve blood glucose homeostasis. The overexpression of wild-type liver glycogen synthase in rats had no effect on blood glucose homeostasis in either the fed or the fasted state. In contrast, the expression of a constitutively active mutant form of the enzyme caused a significant lowering of blood glucose in the former but not the latter state. Moreover, it markedly enhanced the clearance of blood glucose when fasted rats were challenged with a glucose load. Hepatic glycogen stores in rats overexpressing the activated mutant form of liver glycogen synthase were enhanced in the fed state and in response to an oral glucose load but showed a net decline during fasting. In order to test whether these effects were maintained during long term activation of liver glycogen synthase, we generated liver-specific transgenic mice expressing the constitutively active LGS form. These mice also showed an enhanced capacity to store glycogen in the fed state and an improved glucose tolerance when challenged with a glucose load. Thus, we conclude that the activation of liver glycogen synthase improves glucose tolerance in the fed state without compromising glycogenolysis in the postabsorptive state. On the basis of these findings, we propose that the activation of liver glycogen synthase may provide a potential strategy for improvement of glucose tolerance in the postprandial state.  相似文献   

3.
The effect of inhibition of glycogen phosphorylase by 1,4-dideoxy-1,4-imino-d-arabinitol on rates of gluconeogenesis, gluconeogenic deposition into glycogen, and glycogen recycling was investigated in primary cultured hepatocytes, in perfused rat liver, and in fed or fasted rats in vivo clamped at high physiological levels of plasma lactate. 1,4-Dideoxy-1,4-imino-d-arabinitol did not alter the synthesis of glycerol-derived glucose in hepatocytes or lactate-derived glucose in perfused liver or fed or fasted rats in vivo. Thus, 1,4-dideoxy-1,4-imino-d-arabinitol inhibited hepatic glucose output in the perfused rat liver (0.77 +/- 0.19 versus 0.33 +/- 0.09, p < 0.05), whereas the rate of lactate-derived gluconeogenesis was unaltered (0.22 +/- 0.09 versus 0.18 +/- 0.08, p = not significant) (1,4-dideoxy-1,4-imino-d-arabinitol versus vehicle, micromol/min * g). Overall, the data suggest that 1,4-dideoxy-1,4-imino-d-arabinitol inhibited glycogen breakdown with no direct or indirect effects on the rates of gluconeogenesis. Total end point glycogen content (micromol of glycosyl units/g of wet liver) were similar in fed (235 +/- 19 versus 217 +/- 22, p = not significant) or fasted rats (10 +/- 2 versus 7 +/- 2, p = not significant) with or without 1,4-dideoxy-1,4-imino-d-arabinitol, respectively. The data demonstrate no glycogen cycling under the investigated conditions and no effect of 1,4-dideoxy-1,4-imino-d-arabinitol on gluconeogenic deposition into glycogen. Taken together, these data also suggest that inhibition of glycogen phosphorylase may prove beneficial in the treatment of type 2 diabetes.  相似文献   

4.
Epinephrine and the alpha-adrenergic agonist phenylephrine activated phosphorylase, glycogenolysis, and gluconeogenesis from lactate in a dose-dependent manner in isolated rat liver parenchymal cells. The half-maximally active dose of epinephrine was 10-7 M and of phenylephrine was 10(-6) M. These effects were blocked by alpha-adrenergic antagonists including phenoxybenzamine, but were largely unaffected by beta-adrenergic antagonists including propranolol. Epinephrine caused a transient 2-fold elevation of adenosine 3':5'-monophosphate (cAMP) which was abolished by propranolol and other beta blockers, but was unaffected by phenoxybenzamine and other alpha blockers. Phenoxybenzamine and propranolol were shown to be specific for their respective adrenergic receptors and to not affect the actions of glucagon or exogenous cAMP. Neither epinephrine (10-7 M), phenylephrine (10-5 M), nor glucagon (10-7 M) inactivated glycogen synthase in liver cells from fed rats. When the glycogen synthase activity ratio (-glucose 6-phosphate/+ glucose 6-phosphate) was increased from 0.09 to 0.66 by preincubation of such cells with 40 mM glucose, these agents substantially inactivated the enzyme. Incubation of hepatocytes from fed rats resulted in glycogen depletion which was correlated with an increase in the glycogen synthase activity ratio and a decrease in phosphorylase alpha activity. In hepatocytes from fasted animals, the glycogen synthase activity ratio was 0.32 +/- 0.03, and epinephrine, glucagon, and phenylephrine were able to lower this significantly. The effects of epinephrine and phenylephrine on the enzyme were blocked by phenoxybenzamine, but were largely unaffected by propranolol. Maximal phosphorylase activation in hepatocytes from fasted rats incubated with 10(-5) M phenylephrine preceded the maximal inactivation of glycogen synthase. Addition of glucose rapidly reduced, in a dose-dependent manner, both basal and phenylephrine-elevated phosphorylase alpha activity in hepatocytes prepared from fasted rats. Glucose also increased the glycogen synthase activity ratio, but this effect lagged behind the change in phosphorylase. Phenylephrine (10-5 M) and glucagon (5 x 10(-10) M) decreased by one-half the fall in phosphoryalse alpha activity seen with 10 mM glucose and markedly suppressed the elevation of glycogen synthase activity. The following conclusions are drawn from these findings. (a) The effects of epinephrine and phenylephrine on carbohydrate metabolism in rat liver parenchymal cells are mediated predominantly by alpha-adrenergic receptors. (b) Stimulation of these receptors by epinephrine or phenylephrine results in activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase by mechanisms not involving an increase in cellular cAMP. (c) Activation of beta-adrenergic receptors by epinephrine leads to the accumulation of cAMP, but this is associated with minimal activation of phosphorylase or inactivation of glycogen synthase...  相似文献   

5.
Glycogen synthesis from various combinations of substrates by hepatocytes isolated from rats fasted 24 h was studied. As reported by Katz et al. (Katz, J., Golden, S., and Wals, P. A. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 3433-3437), appreciable rates of glycogen synthesis occurred only in the presence of gluconeogenic precursors and one of several amino acids, which includes L-glutamine. L-Leucine had negligible effects on glycogen synthesis from 20 mM dihydroxyacetone and/or 15 mM glucose when L-glutamine was not added to the medium. In the presence of 10 mM L-glutamine, L-leucine greatly increased glycogen synthesis from these substrates. alpha-Ketoisocaproate was ineffective, as was oleate. NH4Cl depressed glycogen synthesis from 10 mM glucose plus 20 mM dihydroxyacetone in the absence of added L-glutamine and enhanced that in its presence, but these effects were weak compared to those of L-leucine. The amino acid analogues L-norvaline and L-norleucine exerted effects that were similar to those exerted by L-leucine. Under all conditions studied, cycloheximide and puromycin inhibited net glycogen synthesis. Cycloheximide did not stimulate gluconeogenesis from dihydroxyacetone, or phosphorylase in hepatocytes from starved rats, or glycogenolysis in hepatocytes from fed rats. Puromycin, however, stimulated glycogenolysis in hepatocytes from fed rats. Glycogen synthesis from 20 mM dihydroxyacetone proceeds with a pronounced initial lag phase that can be shortened by incubation of cells with glutamine plus leucine before addition of dihydroxyacetone. Concurrent measurements of glycogen synthesis, glycogen synthase, and gluconeogenesis under different conditions reveal that in addition to protein synthesis, activation of glycogen synthase, which must occur to allow glycogen synthesis in hepatocytes, requires a second component which can be satisfied by addition of dihydroxyacetone or fructose to the cells.  相似文献   

6.
The specific intracellular cyclic AMP-dependent protein kinase antagonist, the Rp-diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), inhibited both basal and cyclic AMP-agonist-induced rates of gluconeogenesis in hepatocytes isolated from fasted rats. Incubation of the cells in the presence of pyruvate and lactate and either the Sp-diastereomer of adenosine cyclic 3',5'-phosphorothioate (Sp-cAMPS) or glucagon produced a concentration-dependent increase in the rate of gluconeogenic glucose production which was shifted to higher concentrations of Sp-cAMPS or glucagon in the presence of Rp-cAMPS. Incubation of the cells with Rp-cAMPS in the absence of agonist produced no increase in the rate of glucose production and, in most cases, 100 microM-Rp-cAMPS resulted in 14-20% decrease in the substrate-stimulated rate of glucose production. Sp-cAMPS-induced gluconeogenesis was inhibited half-maximally at 1 microM-Rp-cAMPS and glucagon-induced gluconeogenesis was inhibited half-maximally at 12 microM-Rp-cAMPS. Approx. 10-15% of the inhibition of gluconeogenesis observed in the presence of Rp-cAMPS was due to conversion of glucose 6-phosphate to liver glycogen, consistent with Rp-cAMPS-induced reactivation of glycogen synthase. The remaining 85-90% inhibition of gluconeogenic glucose production resulted from the action of Rp-cAMPS on the cyclic AMP-sensitive enzymes controlling the rate of gluconeogenesis.  相似文献   

7.
In hepatocytes from fasted rats, Zn2+ in the range from 0 to 500 microM has relatively minor effects on gluconeogenesis from most substrates, or on ureagenesis from NH3. In hepatocytes from fed rats, Zn2+ does not affect glycogenolysis. In hepatocytes from fasted rats, in which glycogen is being actively synthesized using the substrate combination (Katz et al. (1976) Proc. Natl.Acad.Sci.USA 73,3433-3437) of glucose, lactate and glutamine (all 10mM), Zn2+ markedly inhibits glycogen synthesis, with total inhibition at 500 microM, and a half maximal effect in the range from 50 to 100 microM. Dipicolinate (pyridine 2,6-dicarboxylate), a zinc chelator, is about as effective as L-glutamine in activating glycogen synthesis with the substrate combination of dihydroxyacetone, lactate and glucose (all 10mM). This suggests the possible hypothesis that endogenous Zn2+ might control the rate of glycogen synthesis in vivo. However, alternate explanations such as metabolite accumulation are also possible, since dipicolinate causes inhibition of gluconeogenesis from L-lactate.  相似文献   

8.
Differences in cofactor (NADPH and UDP-glucuronic acid) supply for various processes of biotransformation were studied by investigating the interrelations between glucose production (gluconeogenesis and glycogenolysis) and drug (p-nitrophenol, aminopyrine, phenolphthalein) biotransformation (hydroxylation and conjugation) in isolated murine hepatocytes. In glycogen-depleted hepatocytes prepared from animals fasted for 48 h (i) p-nitrophenol conjugation was decreased by 80% compared to the fed control, while aminopyrine oxidation was unaltered, (ii) addition of glucose or gluconeogenic substrates failed to increase the rate of p-nitrophenol conjugation, while the rate of p-nitrophenol and also aminopyrine oxidation was increased and (iii) gluconeogenesis was inhibited by 80% by aminopyrine oxidation: it was moderately decreased by p-nitrophenol oxidation and conjugation and remained unchanged by phenolphthalein conjugation. In hepatocytes prepared from fed mice (i) p-nitrophenol conjugation was independent of the extracellular glucose concentration, (ii) it was linked to the consumption of glycogen - addition of fructose inhibited p-nitrophenol glucuronidation only, while sulfation was unaltered and (iii) p-nitrophenol oxidation was not detectable: aminopyrine oxidation was not affected by fructose addition. It is suggested that UDP-glucuronic acid for glucuronidation derives predominantly from glycogen, while the NADPH generation for mixed function oxidation is linked to glucose uptake and / or gluconeogenesis in the liver.  相似文献   

9.
10.
Vasopressin inhibits fatty acid oxidation and stimulates fatty acid esterification, glycogenolysis, and lactate production in hepatocytes from fed rats. In cells from fasted rats, the effect of the hormone on palmitate oxidation was absent, while gluconeogenesis was stimulated. The inhibitory action of vasopressin on palmitate oxidation was not due to the increased lactate production. Neither was it correlated to glycogen content or stimulation of glycogenolysis, which were restored earlier than the vasopressin effect on palmitate oxidation when previously fasted rats were refed a carbohydrate diet. The level of malonyl-CoA was moderately increased by vasopressin. Isolated mitochondria from rat liver were incubated in the presence of [U-14C]palmitate, ATP, CoA carnitine, glycerophosphate, ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid, and varying amounts of calcium. The oxidation of palmitate was inhibited when the concentration of free calcium was increased from about 0.1 to 10 microM. Simultaneously, palmitate esterification was stimulated. This effect of calcium was observed also with mitochondria from fasted rats and with octanoate as well as palmitate as the substrate. Carnitine acylation was not affected by calcium. The possibility that the observed effects of calcium on mitochondrial fatty acid utilization is part of the mechanism of action of vasopressin on hepatocyte fatty acid metabolism is discussed.  相似文献   

11.
Metabolic responses to exercise after fasting   总被引:1,自引:0,他引:1  
Fasting before exercise increases fat utilization and lowers the rate of muscle glycogen depletion. Since a 24-h fast also depletes liver glycogen, we were interested in blood glucose homeostasis during exercise after fasting. An experiment was conducted with human subjects to determine the effect of fasting on blood metabolite concentrations during exercise. Nine male subjects ran (70% maximum O2 consumption) two counterbalanced trials, once fed and once after a 23-h fast. Plasma glucose was elevated by exercise in the fasted trial but there was no difference between fed and fasted during exercise. Lactate was significantly higher (P less than 0.05) in fasted than fed throughout the exercise bout. Fat mobilization and utilization appeared to be greater in the fasted trial as evidenced by higher plasma concentrations of free fatty acids, glycerol, and beta-hydroxybutyrate as well as lower respiratory exchange ratio in the fasted trial during the first 30 min of exercise. These results demonstrate that in humans blood glucose concentration is maintained at normal levels during exercise after fasting despite the depletion of liver glycogen. Homeostasis is probably maintained as a result of increased gluconeogenesis and decreased utilization of glucose in the muscle as a result of lowered pyruvate dehydrogenase activity.  相似文献   

12.
1. A technique for perfusion of the mouse liver has been developed, and aspects of carbohydrate metabolism have been investigated in the perfused liver of normal and genetically obese mice, homozygous for the recessive gene ob. 2. Rates of gluconeogenesis in perfused mouse liver were faster than those reported for slices of mouse liver, particularly from lactate and pyruvate. 3. The rate of glycogen breakdown to glucose, but not to lactate, was faster in liver from fed obese mice. 4. The capacity for glycogen synthesis from glucose was enhanced in liver from 20h-starved obese mice. 5. The capacity for gluconeogenesis from a number of substrates was not significantly altered in livers from fed or starved obese mice when compared with that of lean mice. 6. These results suggest that the liver contributes to the hyperglycaemia of the obese mice by increased glycogenolysis, and that liver glycogen in obese mice is maintained by synthesis from dietary glucose.  相似文献   

13.
Rat liver parenchymal cells were isolated with (a) collagenase alone and (b) with both collagenase and hyaluronidase. Addition of hyaluronidase significantly decreased intracellular glycogen content of cells from fed rats. Effects of various concentrations of glucagon on gluconeogenesis were also studied in isolated hepatocytes from fed and fasted rats. Glucagon at the concentration of 10?12M to 10?10M stimulated gluconeogenesis in fed rats. Higher concentrations (10?8M) had no further stimulating effect. In fasted rats, glucagon at the concentrationsof 10?12M had no effect whereas at 10?10M to 10?8M concentrations, it stimulated gluconeogenesis by 2 fold. These studies suggest that glucagon functions in gluconeogenesis both in the fed and fasted state.  相似文献   

14.
Fuel metabolism in fasted newborn rabbits   总被引:1,自引:0,他引:1  
Newborn rabbits delivered by Caesarean section at term were fasted for 72 h at 36 degrees C. Despite the abrupt interruption of maternal supply of energy substrates, glycaemia remains stable for 4 h after birth. This can be related to glucose production via rapid liver glycogenolysis; however, indirect evidence suggests that gluconeogenesis could also contribute to glucose production during this period. There is a selective decrease in the concentrations of gluconeogenic substrates and a suitable hormonal environment for gluconeogenesis as decreased insulin and increased glucagon concentration just after birth. The relative hypoglycaemia which develops after 6 h of life (2.6 mM at 72 h), despite high blood concentrations of non-esterified fatty acids and ketone bodies is not due to a deficient gluconeogenesis per se, as injection of gluconeogenic substrates to 72 h fasted newborns produces a three-fold increase in plasma glucose concentration. It is suggested that this relative hypoglycaemia is secondary to limited gluconeogenic substrate availability in the form of low circulting concentrations of gluconeogenic amino acids.  相似文献   

15.
1. By perfusion of rat livers with 3mm-AMP in the perfusion medium we obtain increased intracellular concentrations of AMP. 2. These high intracellular concentrations of AMP lead to an increased output of glucose and urea into the perfusion medium. 3. The increased output of glucose in livers from fed rats is brought about primarily by an AMP-stimulated breakdown of liver glycogen. In livers from starved rats the increase in glucose output is not as great, reflecting the low contents of glycogen in livers from starved rats. 4. AMP inhibits gluconeogenesis from lactate in perfused livers. In the presence of high concentrations of lactate, however, the counteracting effects of AMP to increase glycogenolysis and to inhibit gluconeogenesis result in little change in the net glucose output. 5. The increased urea output is brought about by increased breakdown of amino acids that are present in the perfusion medium. In livers from starved rats the overall urea production is much higher, indicating increased catabolism of amino acids and other nitrogenous substrates in the absence of carbohydrate substrates. 6. AMP causes an inhibition of incorporation of labelled precursors into protein and nucleic acid. This may result from increased catabolism of precursors of proteins and nucleic acids as reflected by the more rapid breakdown of nitrogenous compounds. In support of this hypothesis, cell-free systems for amino acid incorporation isolated from livers perfused with and without AMP are equally capable of supporting protein synthesis. 7. The labelling pattern of RNA in perfused livers corresponds very closely to those found by pulse-labelling in vivo. AMP in no way alters the qualitative nature of the labelling patterns. 8. We consider these results as supporting evidence for the role of the concentration ratio of AMP to ATP in controlling the metabolic pathways that lead to the formation of ATP.  相似文献   

16.
To determine the effect of maternal exercise on fetal liver glycogen content, fed and fasted rats that were pregnant for 20.5 or 21.5 days were run on a rodent treadmill for 60 min at 12 m/min with a 0% grade or 16 m/min up a 10% grade. The rats were anesthetized by intravenous injection of pentobarbital sodium, and fetal and maternal liver and plasma samples were collected and frozen. Fetal liver glycogenolysis did not occur as a result of maternal exercise. Fetal blood levels of lactate increased 22-60%, but glucose, plasma glucagon, and insulin were unchanged during maternal exercise. Maternal liver glycogen decreased as a result of exercise in all groups of rats except the fasted 20.5-day-pregnant group. Plasma free fatty acids increased in all groups and blood lactate increased in fed (20.5 days) and fasted (21.5 days) pregnant rats. Maternal glucose, glucagon, and insulin values remained constant during exercise. The fetus appears to be well-protected from metabolic stress during moderate-intensity maternal exercise.  相似文献   

17.
Inhibition of gluconeogenesis and glycogenolysis by 2,5-anhydro-D-mannitol   总被引:1,自引:0,他引:1  
2,5-Anhydro-D-mannitol (100 to 200 mg/kg) decreased blood glucose by 17 to 58% in fasting mice, rats, streptozotocin-diabetic mice, and genetically diabetic db/db mice. Serum lactate in rats was elevated 56% by 2,5-anhydro-D-mannitol, but this could be prevented by dichloroacetate (200 mg/kg) or thiamin (200 mg/kg). In hepatocytes from fasted rats, 1 mM 2,5-anhydro-D-mannitol inhibited gluconeogenesis from a mixture of alanine, lactate, and pyruvate. It also inhibited glucose production and stimulated lactate formation from glycerol or dihydroxyacetone. Glycogenolysis in hepatocytes from fed rats was markedly inhibited by 1 mM 2,5-anhydro-D-mannitol both in the presence or absence of 1 microM glucagon. 2,5-Anhydro-D-mannitol can be phosphorylated by fructokinase or hexokinase to the 1-phosphate and then by phosphofructokinase to the 1,6-bisphosphate. Rat liver glycogen phosphorylase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 0.66 +/- 0.09 mM) but was little affected by 2,5-anhydro-D-mannitol 1,6-bisphosphate. Rat liver phosphoglucomutase was inhibited by 2,5-anhydro-D-mannitol 1-phosphate (apparent Ki = 2.8 +/- 0.2 mM), whereas 2,5-anhydro-D-mannitol 1,6-bisphosphate served as an alternative activator (apparent K alpha = 7.0 +/- 0.5 microM). Rabbit liver pyruvate kinase was activated by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent K alpha = 9.5 +/- 0.9 microM), whereas rabbit liver fructose 1,6-bisphosphatase was inhibited by 2,5-anhydro-D-mannitol 1,6-bisphosphate (apparent Ki = 3.6 +/- 0.3 microM). The phosphate esters of 2,5-anhydro-D-mannitol would, therefore, be expected to inhibit glycogenolysis and gluconeogenesis and stimulate glycolysis in liver.  相似文献   

18.
Summary Isolated hepatocyte preparations from fed immature American eels,Anguilla rostrata Le Sueur, were used to study gluconeogenic, lipogenic, glycogenic and oxidative rates of radioactively labelled lactate, glycerol, alanine and aspartate. Eel hepatocytes maintain membrane integrity and energy charge during a 2 h incubation period and are considered a viable preparation for studying fish liver metabolism.Incubating eel hepatocytes with 10 mM substrates, the following results were obtained: glycerol, alanine and lactate, in that order, were effective gluconeogenic substrates; these three substrates reduced glucose release from glycogen stores, while aspartate had no such effect; lactate, alanine and aspartate led to high rates of glycerol production, with subsequent incorporation into lipid; incorporation into glycogen was low from all substrates; and, alanine oxidation was seven times higher than that observed with other substrates.When eel hepatocytes were incubated with low or physiological substrate concentrations gluconeogenic rates from lactate were twice those from alanine; rates from aspartate were very low. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis, and had no significant effect on glycogenolysis. Cortisol increased gluconeogenic rates from 1 mM lactate.Thus, in the presence of adequate substrate, eel liver gluconeogenesis is preferentially stimulated relative to glycogenolysis to produce plasma glucose. These data support three important roles for gluconeogenesis: the recycling of muscle lactate, the synthesis of glucose from dietary amino acids to supplement glucose levels, and the production of glycerol for lipogenesis.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

19.
Ethanol stimulates glycogenolysis in livers from fed rats.   总被引:2,自引:0,他引:2  
To determine the reason for the lack of a hypoglycemic effect of ethanol in the fed state, the effect of ethanol on glucose turnover, liver glycogenolysis, and glucose metabolites was determined. Chronically catheterized awake and freely moving fed rats received either ethanol (blood ethanol, 37 +/- 10 mmol/liter, n = 11) or saline (n = 13) intravenously for 4 hr. Glucose turnover was determined using a primed continuous infusion of [3-3H]glucose. The liver was freeze clamped at 4 hr for glycogen and metabolite measurements. Plasma glucose (5.8 +/- 0.3 mmol/liter vs 6.3 +/- 0.2 mmol/liter at 4 hr, ethanol versus saline) and the rate of glucose turnover (61 +/- 9 vs 58 +/- 8 moles/kg.min) were similar during the ethanol and saline infusions. Plasma lactate was significantly higher in the ethanol (1.32 +/- 0.05 mmol/liter) than in the saline (0.86 +/- 0.06 mmol/liter, P less than 0.001) study. Concentrations of gluconeogenic intermediates in the liver (glucose 6-phosphate, fructose 6-phosphate, glucose 1-phosphate, and pyruvate) were all significantly and -30% lower in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol-infused than in saline-infused rats. The liver citrate content was similar in ethanol (0.38 +/- 0.03 mmol/liter) and saline (0.37 +/- 0.04 mmol/liter) studies. Liver glycogen was 75% lower in the ethanol-infused (61 +/- 9 mmol/kg dry wt) than the saline (242 +/- 27 mmol/kg dry wt, P less than 0.001)-infused rats. These data demonstrate that in fed rats given ethanol, glucose turnover is maintained constant by accelerated glycogenolysis. Thus, inhibition of gluconeogenesis by ethanol does not lower hepatic glucose production unless compensatory glycogenolysis can be prevented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号