首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar protein sorting (VPS) pathway of Saccharomyces cerevisiae mediates transport of vacuolar protein precursors from the late Golgi to the lysosome-like vacuole. Sorting of some vacuolar proteins occurs via a prevacuolar endosomal compartment and mutations in a subset of VPS genes (the class D VPS genes) interfere with the Golgi-to-endosome transport step. Several of the encoded proteins, including Pep12p/Vps6p (an endosomal target (t) SNARE) and Vps45p (a Sec1p homologue), bind each other directly [1]. Another of these proteins, Vac1p/Pep7p/Vps19p, associates with Pep12p and binds phosphatidylinositol 3-phosphate (PI(3)P), the product of the Vps34 phosphatidylinositol 3-kinase (PI 3-kinase) [1] [2]. Here, we demonstrate that Vac1p genetically and physically interacts with the activated, GTP-bound form of Vps21p, a Rab GTPase that functions in Golgi-to-endosome transport, and with Vps45p. These results implicate Vac1p as an effector of Vps21p and as a novel Sec1p-family-binding protein. We suggest that Vac1p functions as a multivalent adaptor protein that ensures the high fidelity of vesicle docking and fusion by integrating both phosphoinositide (Vps34p) and GTPase (Vps21p) signals, which are essential for Pep12p- and Vps45p-dependent targeting of Golgi-derived vesicles to the prevacuolar endosome.  相似文献   

2.
The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells.  相似文献   

3.
The yeast protein Ccz1p is necessary for vacuolar protein trafficking and biogenesis. In a complex with Mon1p, it mediates fusion of transport intermediates with the vacuole membrane by activating the small GTPase Ypt7p. Additionally, genetic data suggest a role of Ccz1p in earlier transport steps, in the Golgi. In a search for further proteins interacting with Ccz1p, we identified the endosomal soluble N -ethylmaleimide-sensitive factor attachment protein receptor Pep12p as an interaction partner of Ccz1p. Combining the ccz1 Δ mutation with deletions of PEP12 or other genes encoding components of the endosomal fusion machinery, VPS21, VPS9 or VPS45 , results in synthetic growth phenotypes. The genes MON1 and YPT7 also interact genetically with PEP12 . These results suggest that the Ccz1p–Mon1p–Ypt7p complex is involved in fusion of transport vesicles to multiple target membranes in yeast cells.  相似文献   

4.
Newly synthesized vacuolar hydrolases such as carboxypeptidase Y (CPY) are sorted from the secretory pathway in the late-Golgi compartment and reach the vacuole after a distinct set of membrane-trafficking steps. Endocytosed proteins are also delivered to the vacuole. It has been proposed that these pathways converge at a "prevacuolar" step before delivery to the vacuole. One group of genes has been described that appears to control both of these pathways. Cells carrying mutations in any one of the class E VPS (vacuolar protein sorting) genes accumulate vacuolar, Golgi, and endocytosed proteins in a novel compartment adjacent to the vacuole termed the "class E" compartment, which may represent an exaggerated version of the physiological prevacuolar compartment. We have characterized one of the class E VPS genes, VPS27, in detail to address this question. Using a temperature-sensitive allele of VPS27, we find that upon rapid inactivation of Vps27p function, the Golgi protein Vps10p (the CPY-sorting receptor) and endocytosed Ste3p rapidly accumulate in a class E compartment. Upon restoration of Vps27p function, the Vps10p that had accumulated in the class E compartment could return to the Golgi apparatus and restore correct sorting of CPY. Likewise, Ste3p that had accumulated in the class E compartment en route to the vacuole could progress to the vacuole upon restoration of Vps27p function indicating that the class E compartment can act as a functional intermediate. Because both recycling Golgi proteins and endocytosed proteins rapidly accumulate in a class E compartment upon inactivation of Vps27p, we propose that Vps27p controls membrane traffic through the prevacuolar/endosomal compartment in wild-type cells.  相似文献   

5.
The yeast Vps4 protein (Vps4p) is a member of the AAA protein family (ATPases associated with diverse cellular activities) and a key player in the transport of proteins out of a prevacuolar endosomal compartment. In human cells, we identified two non-allelic orthologous proteins (VPS4-A and VPS4-B) of yeast Vps4p. The human VPS4-A and VPS4-B proteins display a high degree of sequence identity to each other (80 %) and to the yeast Vps4 protein (59 and 60 %, respectively). Yeast cells lacking a functional VPS4 gene exhibit a temperature-sensitive growth defect and mislocalise a carboxypeptidase Y-invertase fusion protein to the cell surface. Heterologous expression of human VPS4 genes in vps4 mutant yeast strains led, in the case of human VPS4-A, to a partial and, in the case of human VPS4-B, to a complete suppression of the temperature-sensitive growth defect. The vacuolar protein sorting defect of vps4 mutant yeast cells was complemented completely by heterologous expressed human VPS4-B protein, and partially by the human VPS4-A protein. Expression of mutant human VPS4-A (E228Q) and VPS4-B (E235Q) proteins, harbouring single amino acid exchanges in their AAA domains, induced dominant-negative vacuolar protein sorting defects in wild-type yeast cells in both cases. Two-hybrid experiments suggest that the human VPS4-A and VPS4-B proteins can form heteromeric complexes, and subcellular localisation experiments indicate that both human VPS4 proteins associate with endosomal compartments in yeast. Based on these results, we conclude that both human VPS4 proteins are involved in intracellular protein trafficking, presumably at a late endosomal protein transport step, similar to the Vps4p in yeast.  相似文献   

6.
Vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae missort and secrete vacuolar hydrolases. The gene affected in one of these mutants, VPS21, encodes a member of the Sec4/Ypt/Rab family of small GTPases. Rab proteins play an essential role in vesicle-mediated protein transport. Using both yeast two-hybrid assays and chemical cross-linking, we have identified another VPS gene product, Vps9p, that preferentially interacts with a mutant form of Vps21p-S21N that binds GDP but not GTP. In vitro purified Vps9p was found to stimulate GDP release from Vps21p in a dose-dependent manner. Vps9p also stimulated GTP association as a result of facilitated GDP release. However, Vps9p did not stimulate guanine nucleotide exchange of GTP-bound Vps21p or GTP hydrolysis. We tested the ability of Vps9p to stimulate the intrinsic guanine nucleotide exchange activity of Rab5, which is a mammalian sequence homologue of Vps21p, and Ypt7p, which is another yeast Rab protein involved in vacuolar protein transport. Rab5, but not Ypt7p was responsive to Vps9p, which indicates that Vps9p recognizes sequence variation among Rab proteins. We conclude that Vps9p is a novel guanine nucleotide exchange factor that is specific for Vps21p/Rab5. Since there are no obvious Vps9p sequence homologues in yeast, Vps9p may also possess unique regulatory functions required for vacuolar protein transport.  相似文献   

7.
Activated GTP-bound Rab proteins are thought to interact with effectors to elicit vesicle targeting and fusion events. Vesicle-associated v-SNARE and target membrane t-SNARE proteins are also involved in vesicular transport. Little is known about the functional relationship between Rabs and SNARE protein complexes. We have constructed an activated allele of VPS21, a yeast Rab protein involved in vacuolar protein sorting, and demonstrated an allele-specific interaction between Vps21p and Vac1p. Vac1p was found to bind the Sec1p homologue Vps45p. Although no association between Vps21p and Vps45p was seen, a genetic interaction between VPS21 and VPS45 was observed. Vac1p contains a zinc-binding FYVE finger that may bind phosphatidylinositol 3-phosphate [PtdIns(3)P]. In other FYVE domain proteins, this motif and PtdIns(3)P are necessary for membrane association. Vac1 proteins with mutant FYVE fingers still associated with membranes but showed vacuolar protein sorting defects and reduced interactions with Vps45p and activated Vps21p. Vac1p membrane association was not dependent on PtdIns(3)P, Pep12p, Vps21p, Vps45p, or the PtdIns 3-kinase, Vps34p. Vac1p FYVE finger mutant missorting phenotypes were suppressed by a defective allele of VPS34. These data indicate that PtdIns(3)P may perform a regulatory role, possibly involved in mediating Vac1p protein-protein interactions. We propose that activated-Vps21p interacts with its effector, Vac1p, which interacts with Vps45p to regulate the Golgi to endosome SNARE complex.  相似文献   

8.
We identified VTA1 in a screen for mutations that result in altered vacuole morphology. Deletion of VTA1 resulted in delayed trafficking of the lipophilic dye FM4-64 to the vacuole and altered vacuolar morphology when cells were exposed to the dye 5-(and 6)-carboxy-2',7'-dichlorofluorescein diacetate (CDCFDA). Deletion of class E vacuolar protein sorting (VPS) genes, which encode proteins that affect multivesicular body formation, also showed altered vacuolar morphology upon exposure to high concentrations of CDCFDA. These results suggest a VPS defect for Deltavta1 cells. Deletion of VTA1 did not affect growth on raffinose and only mildly affected carboxypeptidase S sorting. Turnover of the surface protein Ste3p, the a-factor receptor, was affected in Deltavta1 cells with the protein accumulating on the vacuolar membrane. Likewise the alpha-factor receptor Ste2p accumulated on the vacuolar membrane in Deltavta1 cells. We demonstrated that many class E VPS deletion strains are hyper-resistant to the cell wall disruption agent calcofluor white. Deletion of VTA1 or VPS60, another putative class E gene, resulted in calcofluor white hypersensitivity. A Vta1p-green fluorescent protein fusion protein transiently associated with a Pep12p-positive compartment. This localization was altered by deletion of many of the class E VPS genes, indicating that Vta1p binds to endosomes in a manner dependent on the assembly of the endosomal sorting complexes required for transport. Membrane-associated Vta1p co-purified with Vps60p, suggesting that Vta1p is a class E Vps protein that interacts with Vps60p on a prevacuolar compartment.  相似文献   

9.
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.  相似文献   

10.
Clathrin-coated vesicles mediate the transport of the soluble vacuolar protein CPY from the TGN to the endosomal/prevacuolar compartment. Surprisingly, CPY sorting is not affected in clathrin deletion mutant cells. Here, we have investigated the clathrin-independent pathway that allows CPY transport to the vacuole. We find that CPY transport is mediated by the endosome and requires normal trafficking of its sorting receptor, Vps10p, the steady state distribution of which is not altered in chc1 cells. In contrast, Vps10p accumulates at the cell surface in a chc1/end3 double mutant, suggesting that Vps10p is rerouted to the cell surface in the absence of clathrin. We used a chimeric protein containing the first 50 amino acids of CPY fused to a green fluorescent protein (CPY-GFP) to mimic CPY transport in chc1. In the absence of clathrin, CPY-GFP resides in the lumen of the vacuole as in wild-type cells. However, in chc1/sec6 double mutants, CPY-GFP is present in internal structures, possibly endosomal membranes, that do not colocalize with the vacuole. We propose that Vps10p must be transported to and retrieved from the plasma membrane to mediate CPY sorting to the vacuole in the absence of clathrin-coated vesicles. In this circumstance, precursor CPY may be captured by retrieved Vps10p in an early or late endosome, rather than as it normally is in the trans-Golgi, and delivered to the vacuole by the normal VPS gene-dependent process. Once relieved of cargo protein, Vps10p would be recycled to the trans-Golgi and then to the cell surface for further rounds of sorting.  相似文献   

11.
Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1Δ cells accumulated FM4-64 to a greater extent than wild-type (WT) cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1’s implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.  相似文献   

12.
Multivesicular bodies (MVBs) are late endosomal compartments containing luminal vesicles (MVB vesicles) that are formed by inward budding of the endosomal membrane. In budding yeast, MVBs are an important cellular mechanism for the transport of membrane proteins to the vacuolar lumen. This process requires a class E subset of vacuolar protein sorting (VPS) genes. VPS44 (allelic to NHX1) encodes an endosome-localized Na(+)/H(+) exchanger. The function of the VPS44 exchanger in the context of vacuolar protein transport is largely unknown. Using a cell-free MVB formation assay system, we demonstrated that Nhx1p is required for the efficient formation of MVB vesicles in the late endosome. The recruitment of Vps27p, a class E Vps protein, to the endosomal membrane was dependent on Nhx1p activity and was enhanced by an acidic pH at the endosomal surface. Taken together, we propose that Nhx1p contributes to MVB formation by the recruitment of Vps27p to the endosomal membrane, possibly through Nhx1p antiporter activity.  相似文献   

13.
Membrane trafficking intermediates involved in the transport of proteins between the TGN and the lysosome-like vacuole in the yeast Saccharomyces cerevisiae can be accumulated in various vps mutants. Loss of function of Vps45p, an Sec1p-like protein required for the fusion of Golgi-derived transport vesicles with the prevacuolar/endosomal compartment (PVC), results in an accumulation of post-Golgi transport vesicles. Similarly, loss of VPS27 function results in an accumulation of the PVC since this gene is required for traffic out of this compartment.

The vacuolar ATPase subunit Vph1p transits to the vacuole in the Golgi-derived transport vesicles, as defined by mutations in VPS45, and through the PVC, as defined by mutations in VPS27. In this study we demonstrate that, whereas VPS45 and VPS27 are required for the vacuolar delivery of several membrane proteins, the vacuolar membrane protein alkaline phosphatase (ALP) reaches its final destination without the function of these two genes. Using a series of ALP derivatives, we find that the information to specify the entry of ALP into this alternative pathway to the vacuole is contained within its cytosolic tail, in the 13 residues adjacent to the transmembrane domain, and loss of this sorting determinant results in a protein that follows the VPS-dependent pathway to the vacuole.

Using a combination of immunofluorescence localization and pulse/chase immunoprecipitation analysis, we demonstrate that, in addition to ALP, the vacuolar syntaxin Vam3p also follows this VPS45/27-independent pathway to the vacuole. In addition, the function of Vam3p is required for membrane traffic along the VPS-independent pathway.

  相似文献   

14.
The late Golgi of the yeast Saccharomyces cerevisiae receives membrane traffic from the secretory pathway as well as retrograde traffic from post-Golgi compartments, but the machinery that regulates these vesicle-docking and fusion events has not been characterized. We have identified three components of a novel protein complex that is required for protein sorting at the yeast late Golgi compartment. Mutation of VPS52, VPS53, or VPS54 results in the missorting of 70% of the vacuolar hydrolase carboxypeptidase Y as well as the mislocalization of late Golgi membrane proteins to the vacuole, whereas protein traffic through the early part of the Golgi complex is unaffected. A vps52/53/54 triple mutant strain is phenotypically indistinguishable from each of the single mutants, consistent with the model that all three are required for a common step in membrane transport. Native coimmunoprecipitation experiments indicate that Vps52p, Vps53p, and Vps54p are associated in a 1:1:1 complex that sediments as a single peak on sucrose velocity gradients. This complex, which exists both in a soluble pool and as a peripheral component of a membrane fraction, colocalizes with markers of the yeast late Golgi by immunofluorescence microscopy. Together, the phenotypic and biochemical data suggest that VPS52, VPS53, and VPS54 are required for the retrograde transport of Golgi membrane proteins from an endosomal/prevacuolar compartment. The Vps52/53/54 complex joins a growing list of distinct multisubunit complexes that regulate membrane-trafficking events.  相似文献   

15.
The multispanning membrane protein Ste6, a member of the ABC-transporter family, is transported to the yeast vacuole for degradation. To identify functions involved in the intracellular trafficking of polytopic membrane proteins, we looked for functions that block Ste6 transport to the vacuole upon overproduction. In our screen, we identified several known vacuolar protein sorting (VPS) genes (SNF7/VPS32, VPS4, and VPS35) and a previously uncharacterized open reading frame, which we named MOS10 (more of Ste6). Sequence analysis showed that Mos10 is a member of a small family of coiled-coil-forming proteins, which includes Snf7 and Vps20. Deletion mutants of all three genes stabilize Ste6 and show a "class E vps phenotype." Maturation of the vacuolar hydrolase carboxypeptidase Y was affected in the mutants and the endocytic tracer FM4-64 and Ste6 accumulated in a dot or ring-like structure next to the vacuole. Differential centrifugation experiments demonstrated that about half of the hydrophilic proteins Mos10 and Vps20 was membrane associated. The intracellular distribution was further analyzed for Mos10. On sucrose gradients, membrane-associated Mos10 cofractionated with the endosomal t-SNARE Pep12, pointing to an endosomal localization of Mos10. The growth phenotypes of the mutants suggest that the "Snf7-family" members are involved in a cargo-specific event.  相似文献   

16.
Many of the vacuolar protein sorting (vps) mutants of Saccharomyces cerevisiae exhibit severe defects in the sorting of vacuolar proteins but still retain near-normal vacuole morphology. The gene affected in one such mutant, vps21, has been cloned and found to encode a member of the ras-like GTP binding protein family. Sequence comparisons with other known GTP binding proteins indicate that Vps21p is unique but shares striking similarity with mammalian rab5 proteins (> 50% identity and > 70% similarity). Regions with highest similarity are clustered within the putative GTP binding motifs and the proposed effector domains of the Vps21/rab5 proteins. Point mutations constructed within these conserved regions inactivate Vps21p function; the mutant cells missort and secrete the soluble vacuolar hydrolase carboxypeptidase Y (CPY). Cells carrying a complete deletion of the VPS21 coding sequence (i) are viable but exhibit a growth defect at 38 degrees C, (ii) missort multiple vacuolar proteins, (iii) accumulate 40-50 nm vesicles and (iv) contain a large vacuole. VPS21 encodes a 22 kDa protein that binds GTP and fractionates with subcellular membranes. Mutant analysis indicates that the association with a membrane(s) is dependent on geranylgeranylation of the C-terminal cysteine residue(s) of Vps21p. We propose that Vps21p functions in the targeting and/or fusion of transport vesicles that mediate the delivery of proteins to the vacuole.  相似文献   

17.
18.
Endocytosis regulates multiple cellular processes, including the protein composition of the plasma membrane, intercellular signaling, and cell polarity. We have identified the highly conserved protein Rush hour (Rush) and show that it participates in the regulation of endocytosis. Rush localizes to endosomes via direct binding of its FYVE (Fab1p, YOTB, Vac1p, EEA1) domain to phosphatidylinositol 3-phosphate. Rush also directly binds to Rab GDP dissociation inhibitor (Gdi), which is involved in the activation of Rab proteins. Homozygous rush mutant flies are viable but show genetic interactions with mutations in Gdi, Rab5, hrs, and carnation, the fly homologue of Vps33. Overexpression of Rush disrupts progression of endocytosed cargo and increases late endosome size. Lysosomal marker staining is decreased in Rush-overexpressing cells, pointing to a defect in the transition between late endosomes and lysosomes. Rush also causes formation of endosome clusters, possibly by affecting fusion of endosomes via an interaction with the class C Vps/homotypic fusion and vacuole protein-sorting (HOPS) complex. These results indicate that Rush controls trafficking from early to late endosomes and from late endosomes to lysosomes by modulating the activity of Rab proteins.  相似文献   

19.
We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabS(Rab7) mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41-dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabS(Rab7) are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabS(Rab7), early endosomal Rab5s-RabA and RabB-reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabS(Rab7) is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabS(Rab7) detectable in the same-frequently the less motile-structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.  相似文献   

20.
Srivastava A  Woolford CA  Jones EW 《Genetics》2000,156(1):105-122
Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional mutants. Characterization of mutants revealed that pep3(ts) mutants are defective in the endosomal and nonendosomal Golgi to vacuole transport pathways, in the cytoplasm to vacuole targeting pathway, in recycling from the endosome back to the late Golgi, and in endocytosis. PEP3 interacts genetically with two members of the endosomal SNARE complex, PEP12 (t-SNARE) and PEP7 (homologue of mammalian EEA1); Pep3p and Pep5p associate physically with Pep7p as revealed by two-hybrid analysis. Our results suggest that a core Pep3p/Pep5p complex promotes vesicular docking/fusion reactions in conjunction with SNARE proteins at multiple steps in transport routes to the vacuole. We propose that this complex may be responsible for tethering transport vesicles on target membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号