首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase.  相似文献   

2.
Purified spinach chloroplasts incorporate [1-14C]isopentenyl diphosphate into prenyl lipids in high yields. The immediate biosynthetic precursors of isopentenyl diphosphate (hydroxymethylglutaryl-CoA, mevalonate, mevalonate-5-phosphate, mevalonate-5-diphosphate), on the other hand, are not accepted as substrates and the corresponding enzymes hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase are not present in the organelles. These enzymes can only be detected in a membrane-bound form at the endoplasmic reticulum (hydroxymethylglutaryl-CoA reductase) and as soluble activities in the cytoplasm. The concept is developed that isopentenyl diphosphate is formed in the cytoplasm as a 'central intermediate' and is distributed then to other cellular compartments (endoplasmic reticulum, plastids, mitochondria) for further biosynthetic utilization.  相似文献   

3.
Klaus Kreuz  Hans Kleinig 《Planta》1981,153(6):578-281
Purified spinach chloroplast and daffodil chromoplast preparations do not use mevalonate, phosphomevalonate, and diphosphomevalonate for the synthesis of isopentenyl diphosphate. Isopentenyl diphosphate, on the other hand, is incorporated into plastidal polyprenoids in large amounts. In the presence of a cytoplasmic supernatant, however, mevalonate and the phosphomevalonates were incorporated into the plastidal polyprenoids in equally large amounts, which demonstrates that the enzymes mevalonate kinase (EC 2.7.1.36), phosphomevalonate kinase (EC 2.7.4.2), and diphosphomevalonate decarboxylase (EC 4.1.1.33) are soluble cytoplasmic enzymes and that they apparently do not occur as isoenzymes within the plastids. The concept is developed that isopentenyl diphosphate is a central intermediate in plant polyprenoid formation which is channeled into several compartment for different biosynthetic pathways.Abbreviation IPP isopentenyl diphosphate - ChlGG Chlorophyll a esterified with geranylgeraniol - HPLC high pressure liquid chromatography  相似文献   

4.
The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative “Thermoplasma-type” mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.  相似文献   

5.
The polyisoprenoid alcohols (dolichols and polyprenols) are found in all living organism, from bacteria to mammals. In animal and yeast cells polyisoprenoids are derived from the cytoplasmic mevalonate (MVA) pathway while in plants two biosynthetic pathways, the MVA and the plastidial methylerythritol phosphate (MEP) pathway provide precursors for polyisoprenoid biosynthesis. The key enzymes of polyisoprenoid synthesis are cis-prenyltransferases (CTPs), responsible for construction of the long hydrocarbon skeleton. CPTs elongate a short all-trans precursor, oligoprenyl diphosphate, by sequential addition of the desired number of isopentenyl diphosphate molecules which results in formation of a stretch of cis units. Several genes encoding CPT have been cloned from bacteria, plants and mammals. Interestingly, in Arabidopsis, the tissue-specific expression of ten putative cis-prenyltransferases was observed. In contrast to polyisoprenoid phosphates serving as cofactors in the biosynthesis of glycoproteins, glucosyl phosphatidyl inositol (GPI) anchor or bacterial peptidoglycan, the biological importance of polyprenols and dolichols still remains a question of debate besides their function of reservoir of substrates for kinase. These extremely hydrophobic superlipids are postulated to be involved in intracellular traffic of proteins and in cellular defense against adverse environmental conditions. Recent publications show a direct link between the dolichol biosynthetic pathway and congenital disorders of glycosylation (CDG). These discoveries highlighting the cellular significance of polyisoprenoids simultaneously establish the background for future pharmacological interventions. Our mini-review summarizes the results of recent studies on polyisoprenoids.  相似文献   

6.
Plants and their derived cell and tissue cultures in the family Rubiaceae accumulate a number of anthraquinones. There are two main biosynthetic pathways leading to anthraquinones in higher plants: the polyketide pathway and the chorismate/o-succinylbenzoic acid pathway. The latter occurs in the Rubiaceae for the biosynthesis of Rubia type anthraquinones. In this pathway, ring A and B of the Rubia type anthraquinones are derived from shikimic acid, -ketoglutarate via o-succinylbenzoate, whereas ring C is derived from isopentenyl diphosphate, a universal building block for all isoprenoids. At present, it is known that isopentenyl diphosphate is formed via the mevalonic acid pathway or the 2-C-methyl-D-erythritol 4-phosphate pathway. Recent findings demonstrate that the 2-C-methyl-D-erythritol 4-phosphate pathway, not the mevalonic acid pathway, is involved in the formation of isopentenyl diphosphate, which constitutes ring C of anthraquinones in the Rubiaceae. This review summarizes the latest results of studies on the biosynthetic pathways, the enzymology and regulation of anthraquinone biosynthesis, as well as aspects of the metabolic engineering. Furthermore, biochemical and molecular approaches in functional genomics, which facilitate elucidation of anthraquinone biosynthetic pathways, are briefly described.  相似文献   

7.
Summary The activities of the mevalonate metabolizing enzymes-HMG-CoA reductase, mevalonate kinase, mevalonate phosphokinase and mevalonate pyrophosphate decarboxylase -were assayed with the respective substrates in green seedlings of Arachis hypogaea. MVAPP decarboxylase is the rate-limiting step among these enzymes and is inhibited by phenolic acids. Its activity in the seedlings was found to decrease in the absence of light and on treatment with abscisic acid. These results suggest that regulation of isoprene pathway in groundnut seedlings may occur at the level of mevalonate decarboxylation.Abbreviations HMG CoA 3-hydroxy-3-methyl-glutaryl coenzyme A - MVA Mevalonate - MVAP Mevalonate-5-phosphate - MVAPP Mevalonate-5-pyrophosphate - DTT Dithiothreitol - ABA Abscisic Acid  相似文献   

8.
Archaea have been shown to produce isoprenoids from mevalonate; however, genome analysis has failed to identify several genes in the mevalonate pathway on the basis of sequence similarity. A predicted archaeal kinase, coded for by the MJ0044 gene, was associated with other mevalonate pathway genes in the archaea and was predicted to be the "missing" phosphomevalonate kinase. The MJ0044-derived protein was tested for phosphomevalonate kinase activity and was found not to catalyze this reaction. The MJ0044 gene product was found to phosphorylate isopentenyl phosphate, generating isopentenyl diphosphate. Unlike other known kinases associated with isoprene biosynthesis, Methanocaldococcus jannaschii isopentenyl phosphate kinase is predicted to be a member of the aspartokinase superfamily.  相似文献   

9.
In animals, cholesterol is made from 5‐carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)‐mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate‐3‐kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)‐mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation.  相似文献   

10.
The incorporation of [14C]mevalonate and [14C]isopentenyl diphosphate into geranylgeranyl diphosphate was investigated in in vitro systems from Cucurbita pepo (pumpkin) endosperm and from Avena sativa etioplasts. Mevalonate incorporation was effectively inhibited in the pumpkin system by geranylgeranyl diphosphate and geranylgeranyl monophosphate but less effectively by phytyl diphosphate or inorganic diphosphate. Membrane lipids, geranyllinalool, or lecithin enhanced mevalonate incorporation in the Cucurbita system. Incorporation of isopentenyl diphosphate was also enhanced by lecithin and inhibited by geranylgeranyl diphosphate in the Cucurbita system. No lipid enhancement was found in the Avena system; inhibition by GGPP required a much higher GGPP concentration than in the Cucurbita system.  相似文献   

11.
In the early times of isoprenoid research, a single pathway was found for the formation of the C5 monomer, isopentenyl diphosphate (IPP), and this acetate/mevalonate pathway was supposed to occur ubiquitously in all living organisms. Now, 40 years later, a totally different IPP biosynthesis route has been detected in eubacteria, green algae and higher plants. In this new pathway glyceraldehyde 3-phosphate (GAP) and pyruvate are precursors of isopentenyl diphosphate, but not acetyl-CoA and mevalonic acid. In green tissues of three higher plants it was shown that all chloroplastbound isoprenoids (β-carotene, phytyl chains of chlorophylls and nona-prenyl chain of plastoquinone-9) are formed via the GAP/pyruvate pathway, whereas the cytoplasmic sterols are formed via the acetate/mevalonate pathway. Also, isoprene, emitted by various plants at high light conditions by action of the plastid-bound isoprene synthase, is formed via the new GAP/pyruvate pathway. Thus, in higher plants, there exist two separate and biochemically different IPP biosynthesis pathways: (1) the novel alternative GAP/pyruvate pathway apparently bound to the plastidic compartment and (2) the classical cytoplasmic acetate/mevalonate pathway. This new GAP/pyruvate pathway for IPP formation allows a reasonable interpretation of previous odd results concerning the biosynthesis of chloroplast isoprenoids, which, so far, had mainly been interpreted assuming compartmentation differences. The novel GAP/pyruvate pathway for IPP formation in plastids appears as a heritage of their prokaryotic, endosymbiotic ancestors.  相似文献   

12.
The mevalonate pathway and the glyceraldehyde 3-phosphate (GAP)-pyruvate pathway are alternative routes for the biosynthesis of the central isoprenoid precursor, isopentenyl diphosphate. Genomic analysis revealed that the staphylococci, streptococci, and enterococci possess genes predicted to encode all of the enzymes of the mevalonate pathway and not the GAP-pyruvate pathway, unlike Bacillus subtilis and most gram-negative bacteria studied, which possess only components of the latter pathway. Phylogenetic and comparative genome analyses suggest that the genes for mevalonate biosynthesis in gram-positive cocci, which are highly divergent from those of mammals, were horizontally transferred from a primitive eukaryotic cell. Enterococci uniquely encode a bifunctional protein predicted to possess both 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase and acetyl-CoA acetyltransferase activities. Genetic disruption experiments have shown that five genes encoding proteins involved in this pathway (HMG-CoA synthase, HMG-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and mevalonate diphosphate decarboxylase) are essential for the in vitro growth of Streptococcus pneumoniae under standard conditions. Allelic replacement of the HMG-CoA synthase gene rendered the organism auxotrophic for mevalonate and severely attenuated in a murine respiratory tract infection model. The mevalonate pathway thus represents a potential antibacterial target in the low-G+C gram-positive cocci.  相似文献   

13.
A gentle procedure allowed the isolation of intact and highly active chloroplasts from the unicellular green algaAcetabularia mediterranea. These chloroplasts incorporated carbon from NaH14CO3 into fatty acids and prenyl lipids at a rate of about 20–50 nmol carbon· (mg chlorophyll)−1·h−1. Most of the fatty acids formed in vitro were esterified in galactolipids. The main prenyl lipids synthesized were the chlorophyll side chain, intermediates of the carotenogenic path, α-and β-carotene, as well as lutein. Large amounts of [1-14C]acetate were incorporated, but exclusively into fatty acids.Isopentenyl diphosphate was a good substrate for prenyl-lipid formation in hypotonically treated chloroplasts. The envelope of intact chloroplasts, however, was impermeable to this compound. Intermediates of the mevalonate pathway were not accepted as precursors under conditions whereisopentenyl diphosphate was well incorporated. The results show that the lipid biosynthetic pathways in the plastids ofAcetabularia, a member of the ancient family of Dasycladaceae, are very similar to those in higher-plant plastids. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

14.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

15.
Plant isoprenoids are derived from two biosynthetic pathways, the cytoplasmic mevalonate (MVA) and the plastidial methylerythritol phosphate (MEP) pathway. In this study their respective contributions toward formation of dolichols in Coluria geoides hairy root culture were estimated using in vivo labeling with (13)C-labeled glucose as a general precursor. NMR and mass spectrometry showed that both the MVA and MEP pathways were the sources of isopentenyl diphosphate incorporated into polyisoprenoid chains. The involvement of the MEP pathway was found to be substantial at the initiation stage of dolichol chain synthesis, but it was virtually nil at the terminal steps; statistically, 6-8 isoprene units within the dolichol molecule (i.e. 40-50% of the total) were derived from the MEP pathway. These results were further verified by incorporation of [5-(2)H]mevalonate or [5,5-(2)H(2)]deoxyxylulose into dolichols as well as by the observed decreased accumulation of dolichols upon treatment with mevinolin or fosmidomycin, selective inhibitors of either pathway. The presented data indicate that the synthesis of dolichols in C. geoides roots involves a continuous exchange of intermediates between the MVA and MEP pathways. According to our model, oligoprenyl diphosphate chains of a length not exceeding 13 isoprene units are synthesized in plastids from isopentenyl diphosphate derived from both the MEP and MVA pathways, and then are completed in the cytoplasm with several units derived solely from the MVA pathway. This study also illustrates an innovative application of mass spectrometry for qualitative and quantitative evaluation of the contribution of individual metabolic pathways to the biosynthesis of natural products.  相似文献   

16.
A gene cluster encoding enzymes responsible for the mevalonate pathway was isolated from Streptomyces griseolosporeus strain MF730-N6, a terpenoid-antibiotic terpentecin producer, by searching a flanking region of the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene, which had been previously isolated by complementation. By DNA sequencing of an 8.9-kb BamHI fragment, 7 genes encoding geranylgeranyl diphosphate synthase (GGDPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MDPD), phosphomevalonate kinase (PMK), isopentenyl diphosphate (IPP) isomerase, HMG-CoA reductase, and HMG-CoA synthase were suggested to exist in that order. Heterologous expression of these genes in E. coli and Streptomyces lividans, both of which have only the nonmevalonate pathways, suggested that the genes for the mevalonate pathway were included in the cloned DNA fragment. The GGDPS, MK, MDPD, PMK, IPP isomerase, and HMG-CoA synthase were expressed in E. coli. Among them, the recombinant GGDPS, MK, and IPP isomerase were confirmed to have the expected activities. This is the first report, to the best of our knowledge, about eubacterial MK with direct evidence.  相似文献   

17.
Survival of the human pathogen Streptococcus pneumoniae requires a functional mevalonate pathway, which produces isopentenyl diphosphate, the essential building block of isoprenoids. Flux through this pathway appears to be regulated at the mevalonate kinase (MK) step, which is strongly feedback-inhibited by diphosphomevalonate (DPM), the penultimate compound in the pathway. The human mevalonate pathway is not regulated by DPM, making the bacterial pathway an attractive antibiotic target. Since DPM has poor drug characteristics, being highly charged, we propose to use unphosphorylated, cell-permeable prodrugs based on mevalonate that will be phosphorylated in turn by MK and phosphomevalonate kinase (PMK) to generate the active compound in situ. To test the limits of this approach, we synthesized a series of C3-substituted mevalonate analogues to probe the steric and electronic requirements of the MK and PMK active sites. MK and PMK accepted substrates with up to two additional carbons, showing a preference for small substituents. This result establishes the feasibility of using a prodrug strategy for DPM-based antibiotics in S. pneumoniae and identified several analogues to be tested as inhibitors of MK. Among the substrates accepted by both enzymes were cyclopropyl, vinyl, and ethynyl mevalonate analogues that, when diphosphorylated, might be mechanism-based inactivators of the next enzyme in the pathway, diphosphomevalonate decarboxylase.  相似文献   

18.
The mevalonate pathway accounts for conversion of acetyl-CoA to isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products. The pathway functions in most eukaryotes, archaea, and some eubacteria. Only recently has much of the functional and structural basis for this metabolism been reported. The biosynthetic acetoacetyl-CoA thiolase and HMG-CoA synthase reactions rely on key amino acids that are different but are situated in active sites that are similar throughout the family of initial condensation enzymes. Both bacterial and animal HMG-CoA reductases have been extensively studied and the contrasts between these proteins and their interactions with statin inhibitors defined. The conversion of mevalonic acid to isopentenyl 5-diphosphate involves three ATP-dependent phosphorylation reactions. While bacterial enzymes responsible for these three reactions share a common protein fold, animal enzymes differ in this respect as the recently reported structure of human phosphomevalonate kinase demonstrates. There are significant contrasts between observations on metabolite inhibition of mevalonate phosphorylation in bacteria and animals. The structural basis for these contrasts has also recently been reported. Alternatives to the phosphomevalonate kinase and mevalonate diphosphate decarboxylase reactions may exist in archaea. Thus, new details regarding isopentenyl diphosphate synthesis from acetyl-CoA continue to emerge.  相似文献   

19.
The chloroplast isoprenoid synthesis of very young leaves is supplied by the plastidic CO2 → pyruvate → acetyl-coenzyme A (C3 → C2) metabolism (D Schulze-Siebert, G Schultz [1987] Plant Physiol 84: 1233-1237) and occurs via the plastidic mevalonate pathway. The plastidic C3 → C2 metabolism and/or plastidic mevalonate pathway of barley (Hordeum vulgare L.) seedlings changes from maximal activity at the leaf base (containing developing chloroplasts with incomplete thylakoid stacking but a considerable rate of photosynthetic CO2-fixation) almost to ineffectivity at the leaf tip (containing mature chloroplasts with maximal photosynthetic activity). The ability to import isopentenyl diphosphate from the extraplastidic space gradually increases to substitute for the loss of endogenous intermediate supply for chloroplast isoprenoid synthesis (change from autonomic to division-of-labor stage). Fatty acid synthesis from NaH14CO3 decreases in the same manner as shown for leaf sections and chloroplasts isolated from these. Evidence has been obtained for a drastic decrease of pyruvate decarboxylase-dehydrogenase activity during chloroplast development compared with other anabolic chloroplast pathways (synthesis of aromatic amino acid and branched chain amino acids). The noncompetition of pyruvate and acetate in isotopic dilution studies indicates that both a pyruvate-derived and an acetate-derived compound are simultaneously needed to form introductory intermediates of the mevalonate pathway, presumably acetoacetyl-coenzyme A.  相似文献   

20.
Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L−1. The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号