首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PCR-based detection of single nucleotide polymorphisms is a powerful tool for the plant geneticist. Cleaved amplified polymorphic sequence analysis is the most widely used approach for the detection of single nucleotide polymorphisms. However, this technique is limited to mutations which create or disrupt a restriction enzyme recognition site. This paper presents a modification of this technique where mismatches in a PCR primer are used to create a polymorphism based on the target mutation. This technique is useful for following known mutations in segregating populations and genetic mapping of isolated DNAs used for positional based cloning of new genes. In addition, a computer program has been developed that facilitates the design of these PCR primers.  相似文献   

2.
"CloneAssistant 1.0" is a stand-alone software compatible with the current Windows operating systems, which can automatically design cloning primers with full consideration of the sequence information of vectors and genes, cloning strategies, the principles of primer design, reading frames, position effects, and enzymatic reaction conditions for users. Five internal XML (extensible markup language) databases [restriction enzymes, plasmids, universal buffers, PCR (polymerase chain reaction) protection bases, and an MCS (multiple cloning site) double digest interference database] were established to serve as the basic support for "CloneAssistant 1.0". The primer pairs designed are sorted according to the difficulty of the follow-up experiments. Once a primer pair is selected by the user, detailed experimental guidance for this primer pair will be provided. In addition, "CloneAssistant 1.0" can be used for restriction map analysis, ORF (open reading frame) finding, sequence alignment and complementary analysis, translation, restriction enzyme and universal buffer queries, and isocaudamer analysis. "CloneAssistant 1.0" makes gene clone design much easier, and it can be freely downloaded from http://bis.zju.edu.cn/clone.  相似文献   

3.
Krauss U  Eggert T 《BioTechniques》2005,39(5):679-682
Several primer prediction programs have been developed for a variety of applications. However none of these tools allows the prediction of a large set of primers for whole gene site-directed mutagenesis experiments using the megaprimer method. We report a novel primer prediction tool (insilico.mutagenesis), accessible at www.insilico.uni-duesseldorf.de, developed for the application to high-throughput mutagenesis used in directed evolution or structure-function dependency projects, which involve the subsequent mutagenesis of a large number of amino acid positions (e.g., in whole gene saturation or gene scanning mutagenesis experiments). Furthermore, the program is suitable for all site-directed (saturation) mutagenesis approaches, such as saturation mutagenesis of promoter sequences and other types of untranslated intergenic regions. In anticipation of downstream cloning steps, the primer design tool also includes a restriction site control feature alerting the user if unwanted restriction sites have been introduced within the mutagenesis primer. The use of our tool promises to speed up the process of site-directed mutagenesis, as it instantly allows predicting a large set of primers.  相似文献   

4.
Several primer prediction and analysis programs have been developed for diverse applications. However, none of these existing programs can be directly used for the design of primers in protein interaction experiments, since proteins may have transmembrane domains (TMDs) and/or a signal peptide that must be excluded from experiments. Furthermore, it is frequently the case that a short restriction sequences must be added to each primer in order to clone PCR products into a given destination vectors for expression. DePIE, a web-based primer design tool, was developed to address these deficiencies. The program takes as input NCBI protein accession numbers and returns primer information including nucleotide sequences, thermodynamic melting temperature of the nucleotide sequences and the target positions. DePIE is implemented in JAVA, PERL and PHP and has proven to be very efficient in designing primers for our interaction experiments. DePIE services can be accessed at the web site: http://biocore.unl.edu/primer/primerPI.html.  相似文献   

5.
MethPrimer: designing primers for methylation PCRs   总被引:37,自引:0,他引:37  
MOTIVATION: DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. RESULTS: MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.  相似文献   

6.
Seamless gene engineering using RNA- and DNA-overhang cloning   总被引:2,自引:0,他引:2  
Here we describe two methods for generating DNA fragments with single-stranded overhangs, like those generated by the activity of many restriction enzymes, by simple methods that do not involve DNA digestion. The methods, RNA-overhang cloning (ROC) and DNA-overhang cloning (DOC), generate polymerase chain reaction (PCR) products composed of double-stranded (ds) DNA flanked by single-stranded (ss) RNA or DNA overhangs. The overhangs can be used to recombine DNA fragments at any sequence location, creating "perfect" chimeric genes composed of DNA fragments that have been joined without the insertion, deletion, or alteration of even a single base pair. The ROC method entails using PCR primers that contain regions of RNA sequence that cannot be copied by certain thermostable DNA polymerases. Using such a chimeric primer in PCR would yield a product with a 5' overhang identical to the sequence of the RNA component of the primer, which can be used for directional ligation of the amplified product to other preselected DNA molecules. This method provides complete control over both the length and sequence of the overhangs, and eliminates the need for restriction enzymes as tools for gene engineering.  相似文献   

7.
A general strategy is described for using the cleavage site of restriction enzymes in vectors for cloning regardless of how many sites the given enzymes have in the vector. The application of this method allows one to open any vector at its cloning site with protruding ends which can be compatible with almost every commercially available Class II restriction enzyme. By employing this method, the laborious construction of new vectors can be simplified considerably. This general strategy is based on the known ability of Class IIS restriction enzymes to cut any sequence located outside of their recognition site; the introduction of a linker containing recognition site(s) for Class IIS restriction enzyme(s), not present originally in the vector, gives rise to the possibility of opening the vector so as to produce overhangs of arbitrary sequence. In particular, when a symmetrical short sequence representing the protruding end of any Class II enzyme is situated at the cutting position of the Class IIS enzyme, cleavage with the Class IIS enzyme exposes the hitherto hidden, "unique" cloning site. This technique is demonstrated by cloning the cDNA of the multidrug resistance protein to an expression vector.  相似文献   

8.
Since the invention of the PCR technology, adaptation techniques to clone DNA fragments flanking the known sequence continue to be developed. We describe a perfectly annealed cassette available in almost unlimited quantities with variable sticky-and blunt-end restriction enzyme recognition sites for efficient restriction and ligation with the restricted target genomic DNA. The cassette provides a 200-bp sequence, which is used to design a variety of cassette-specific primers. The dephosphorylation prevents cassette self-ligation and creates a nick at the cassette: target genome DNA ligation site suppressing unspecific PCR amplifications. We introduce the single-strand amplification PCR (SSA-PCR) technique where a lone known locus-specific primer is firstly used to enrich the targeted template DNA strand resulting in significant PCR product specificity during the second round conventional nested PCR. The distance between the known locus-specific primer and the nearest location of the restriction enzyme used determined the length of the obtained PCR product. We used this technique to walk downstream into the isochorismatase and upstream into the hypothetical conserved genes flanking the mature extracellular lipase gene from Bacillus licheniformis. We further demonstrated the potential of the technique as a cost-effective method during PCR-based prospecting for novel genes by designing "universal" degenerate primers that detected homologues of Family VII bacterial lipolytic genes in Bacillus species. The cassette ligation-mediated PCR was used to clone complete nucleotide sequences encoding functional lipolytic genes from B. licheniformis and Bacillus pumilus.  相似文献   

9.
A simple and efficient method was developed for directional cloning of PCR products without any restriction enzyme digestion of the amplified sequence. Two pairs of primers were designed in which parts of two restriction enzyme recognition sequences were integrated, and the primers were used for two parallel PCRs. The PCR products were mixed, heat denatured and re-annealed to generate hybridized DNA fragments bearing sticky ends compatible with restriction enzymes. This method is particularly useful when it is necessary to use a restriction enzyme but there is an additional internal restriction site within the amplified sequence, or when there are problems caused by end sensitivity of restriction enzymes.  相似文献   

10.
A family of restriction enzyme- and ligation-independent cloning vectors has been developed for producing recombinant His-tagged fusion proteins in Escherichia coli. These are based on pURI2 and pURI3 expression vectors which have been previously used for the successful production of recombinant proteins at the milligram scale. The newly designed vectors combines two different promoters (lpp(p)-5 and T7 RNA polymerase ?10), two different endoprotease recognition sites for the His?-tag removal (enterokinase and tobacco etch virus), different antibiotic selectable markers (ampicillin and erythromycin resistance), and different placements of the His?-tag (N- and C-terminus). A single gene can be cloned and further expressed in the eight pURI vectors by using six nucleotide primers, avoiding the restriction enzyme and ligation steps. A unique NotI site was introduced to facilitate the selection of the recombinant plasmid. As a case study, the new vectors have been used to clone the gene coding for the phenolic acid decarboxylase from Lactobacillus plantarum. Interestingly, the obtained results revealed markedly different production levels of the target protein, emphasizing the relevance of the cloning strategy on soluble protein production yield. Efficient purification and tag removal steps showed that the affinity tag and the protease cleavage sites functioned properly. The novel family of pURI vectors designed for parallel cloning is a useful and versatile tool for the production and purification of a protein of interest.  相似文献   

11.
位于基因编码区的DNA突变与基因的功能密切相关。在已知人类基因编码区的突变位点时,如何在基因组上设计引物验证该突变是一个重要的问题。本文利用Python语言开发了引物设计程序MutPrimerDesign。MutPrimerDesign通过解析人类基因组序列数据库以及基因注释信息,转换基因编码区坐标为基因组坐标,并调用Primer3的python程序包接口,可批量自动化完成基因突变位点的引物及探针序列设计。MutPrimerDesign使用简便,可识别多种数据库的基因名称,并能够修改引物常规参数,实现引物的快速调整。  相似文献   

12.
I present a software system PCRCLNG that facilitates the design of endonuclease restriction sites into the 5'-end of PCR primers. The product amplified using these primers can be directly cloned into vectors. The program estimates the annealing temperature for each primer and selects the primer pairs with comparable annealing temperature. Finally the software determines whether the PCR product can be cloned into the vector to generate in-frame gene fusion.  相似文献   

13.
The present century has witnessed an unprecedented rise in genome sequences owing to various genome-sequencing programs. However, the same has not been replicated with cDNA or expressed sequence tags (ESTs). Hence, prediction of protein coding sequence of genes from this enormous collection of genomic sequences presents a significant challenge. While robust high throughput methods of cloning and expression could be used to meet protein requirements, lack of intron information creates a bottleneck. Computational programs designed for recognizing intron–exon boundaries for a particular organism or group of organisms have their own limitations. Keeping this in view, we describe here a method for construction of intron-less gene from genomic DNA in the absence of cDNA/EST information and organism-specific gene prediction program. The method outlined is a sequential application of bioinformatics to predict correct intron–exon boundaries and splicing by overlap extension PCR for spliced gene synthesis. The gene construct so obtained can then be cloned for protein expression. The method is simple and can be used for any eukaryotic gene expression.  相似文献   

14.
15.
目的:以人丝裂原活化蛋白激酶3(mitogen-activated protein kinase 3, ) 基因结构为例,利用不同生物相关软件分析、 设计和筛选合适的定量PCR 引物。方法:利用NCBI 的Gene 数据库查找人基因的参考序列、UniGene 数据库查找标准 参考序列;并用在线软件如Spidey, UCSC, Ensembl 等分析基因结构;利用Primer3,Oligo6,IDT 等软件进行引物设计;用MFOLD 程序分析基因二级结构后,选择引物可定位的外显子位置;利用电子PCR进行引物扩增特异性的检验;最后通过实验检验引物的 扩增效果。结果:从程序软件推荐的引物列表中筛选出一对能特异扩增人基因的引物。结论:基因结构分析软件有助于定 量PCR 引物的设计。  相似文献   

16.
A method for real-time fluorescent detection and quantification of nucleic acid amplification using a restriction endonuclease was developed. In this homogeneous system detection is mediated by a primer containing a reporter and quencher moiety at its 5' terminus separated by a short section of DNA encoding a restriction enzyme recognition sequence. In the single stranded form, the signal from the fluorescent reporter is quenched due to fluorescence resonance energy transfer. However, as the primer becomes incorporated into a double stranded amplicon, a restriction enzyme present in the reaction cleaves the DNA linking the reporter and quencher, allowing unrestricted fluorescence of the reporter. To test this system, a primer specific for the E6 gene of human papilloma virus (HPV) 16 was combined with the cleavable energy transfer label and used to amplify HPV16 positive DNA. In the presence of the thermally stable restriction enzyme BstNI, the reporter system was found to generate a fluorescent signal in proportion to the amount of template DNA. In addition to this direct format, the reporter primer was also used to monitor and quantify the amplification of other sequences. This was accomplished by using primers that contain a tag sequence complementary to the reporter oligonucleotide.  相似文献   

17.
Restriction-free (RF) cloning provides a simple, universal method to precisely insert a DNA fragment into any desired location within a circular plasmid, independent of restriction sites, ligation, or alterations in either the vector or the gene of interest. The technique uses a PCR fragment encoding a gene of interest as a pair of primers in a linear amplification reaction around a circular plasmid. In contrast to QuickChange site-directed mutagenesis, which introduces single mutations or small insertions/deletions, RF cloning inserts complete genes without the introduction of unwanted extra residues. The absence of any alterations to the protein as well as the simplicity of both the primer design and the procedure itself makes it suitable for high-throughput expression and ideal for structural genomics.  相似文献   

18.
We describe a set of IBM-compatible computer programs designed to selectively identify the potential sites for silent mutagenesis within a target DNA sequence. This program is based on a novel strategy of identifying amino acid motifs compatible with each restriction site (BioTechniques 12:382-384, 1991). The programs can be used to identify the suitability for the introduction of any 6-base nucleic acid sequences, such as restriction enzyme sites in cassette mutagenesis strategies. The Table program generates a table of multiple amino acid motifs for each restriction enzyme, obtained by translating each unique recognition sequence in all three reading frames. The Silmut program, which utilizes the features of Table, will further identify the presence of a match between any amino acid motif of each restriction enzyme and the input target sequence. Minor manipulations of the data base files will enable the individual researcher to identify the potential for introduction of any 6-base sequences by silent mutagenesis.  相似文献   

19.
A comprehensive DNA analysis computer program was described in the second special issue of Nucleic Acids Research on the applications of computers to research on nucleic acids by Stone and Potter (1). Criteria used in designing the program were user friendliness, ability to handle large DNA sequences, low storage requirement, migratability to other computers and comprehensive analysis capability. The program has been used extensively in an industrial-research environment. This paper talks about improvements to that program. These improvements include testing for methylation blockage of restriction enzyme recognition sites, homology analysis, RNA folding analysis, integration of a large DNA database (GenBank), a site specific mutagenesis analysis, a protein database and protein searching programs. The original design of the DNA analysis program using a command executive from which any analytical programs can be called, has proven to be extremely versatile in integrating both developed and outside programs to the file management system employed.  相似文献   

20.
Better understanding of proteins'' structure/function relationship and dissecting their functional domains are still challenges yet to be mastered. Site-directed mutagenesis approaches that can alter bases at precise positions on the gene sequence can help to reach this goal. This article describes an efficient strategy that can be applied not only for both deletion and substitution of target amino acids, but also for insertion of point mutations in promoter regions to study cis-regulating elements. This method takes advantage of the plasticity of the genetic code and the use of compatible restriction sites.Key words: site-directed mutagenesis, restriction site, cloning, PCRUnderstanding the proteins structure/function relationship and dissecting their functional domains is one of the biggest challenges to current proteomic studies.1 This is mainly achieved by site-directed mutagenesis experiments that can alter bases at precise positions on the gene sequence.2 Modifying DNA sequences has become feasible with PCR amplification.3 During the last decade, several strategies have been developed to simplify this approach and increase its efficiency.4 The introduction of a site-directed mutation can be realized by one or more PCR reactions. Most of the strategies used in site-directed mutagenesis are based on a substitution of a single base, which leads to a change in one amino acid. This article describes an efficient strategy that can be applied for either deletion or substitution of target amino acids. This strategy is based on performing PCR reactions to create a new restriction site in the sequence of origin, corresponding to the desired mutation. The choice of the restriction site to be created depends on the nature of the amino acid that one desires to introduce in the protein sequence. Since such restriction sites may extend beyond the mutated codon. The preservation of the other codon is done by taking advantage of the plasticity of the genetic code where one amino acid can be encoded by multiple codons.This method was performed in two steps (Fig. 1). In the first step, the DNA sequence of interest, cloned in a plasmid, served as a template for two PCR reactions. Two PCR products are generated. The first one consists of the beginning of the sequence, from the start codon to the mutagenized amino acid codon, where the forward primer bears the start codon region and the reverse primer bears the newly introduced restriction site at the same location of the mutagenized codon. The second PCR product consists of the end of the coding sequence, from the mutagenized amino acid codon to the stop codon. This fragment is generated using a forward primer bearing the same new restriction site as the first PCR product''s reverse primer, and a reverse primer bearing the stop codon region. The two PCR products were cloned separately into a vector in the appropriate orientation. In the second step, the cloning vector bearing the first PCR product was digested with a restriction enzyme site in the vector, and by the restriction enzyme corresponding to the restriction site created by the reverse primer used in the PCR reaction. The resulting fragment was cloned into the vector containing the second PCR fragment, predigested with same two restriction enzymes. The whole mutagenized coding sequence is reassembled by in-frame subcloning of the 3′ end of the coding sequence downstream the 5′ end. All the PCR products were generated using the high fidelity Pfu DNA Polymerase (Promega, Madison, WI USA). For any site-directed mutagenesis experiment, this two-step cloning procedure requires the use of appropriate PCR primers that harbor the desired mutation of the target amino acid. These primers are partially overlapping and contain a common or complementary restriction site enabling the in-frame assembly of the whole coding sequence.Open in a separate windowFigure 1Mutagenesis strategy by restriction enzyme site insertion. (A) In the first step, two PCR products were generated using the full length coding sequence as template. The mutation is carried by the two primers b and c, which are flanked by the same or compatible restriction enzyme''s site (white segment). Both PCR products are separately cloned in the cloning vector in the appropriate orientation. In the second step, the whole mutagenized coding sequence is reassembled by in-frame sub cloning of the 3′ end of the coding sequence downstream the 5′ end. (B) Substitution of threonine by arginine as a result of the insertion of a BglII restriction site. DNA sequencing is carried out to make sure that only the desired change is introduced in the coding sequence. (B-1) The sequence of the native cDNA. (B-2) the sequence of the mutagenized cDNA included BglII restriction site sequence.This approach has been used in a recent study to address the structure/function relationship of the STAS domain of the Arabidopsis thaliana Sultr1;2 sulfate transporter.5 A good example of this approach is the replacement of the threonine-serine couple at position 587–588 with an arginine-serine couple. The codon for threonine is: TGT, and that for arginine is: TCT. Serine can be encoded by both TCA and AGA codons. The chosen restriction site used for the reassembly of the whole coding sequence is that of the BglII enzyme: TCT AGA. The insertion of this restriction site enables the substitution of the Thr in position 587 with an Arg while preserving the serine residue in position 588. The BglII restriction site is introduced in the reverse primer and the forward primer used to generate the first and second PCR products respectively. The DNA sequence of the reassembled mutagenized cDNA was checked by sequencing. Than it was expressed, under pGAL1O promoter bearing by pYES2 vector, in yeast mutant deficient in sulfate transporter and the mutagenic protein was detected by imunodetection.Bioinformatic study reveals that this method can be applied to checked a large number of substitutions, insertions or deletions and that finding the right restriction site is not a limiting factor (data no shown).In conclusion, this article describes an efficient two-step procedure for site-directed mutagenesis using primers bearing a restriction site, which is absent from the sequence of origin. The primers flanked by sequences introducing the same or compatible restriction sites mediate the incorporation of the mutation at the selection site. The choice of the restriction site depends on the nature of the desired mutation: insertion, substitution or deletion of an amino acid in a particular position. This strategy can be also used to insert point mutations in promoter regions to study cis-regulating elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号