首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Apolipoprotein M (APOM), a novel apolipoprotein presented mostly in high-density lipoprotein (HDL) in plasma, is involved in lipid and lipoprotein metabolism. Through comparative mapping, we have mapped this gene to SSC7 p1.1 in which many QTLs affecting fat deposition traits have been reported. As a candidate gene for fat deposition traits, in this study, we obtained the 742-bp mRNA sequence of porcine APOM including the full coding region and encoding a protein of 188 amino acids. The sequence was deposited into the GenBank under the accession no. DQ329240. Semi-quantitative RT-PCR results showed that the porcine APOM gene is expressed predominantly in liver and kidney tissue. The genomic sequence of this gene which contains six exons and five introns, is 3,621 bp in length (DQ272488). Bioinformatic analysis of the 5′ regulatory region has revealed that classical TATA-box element and species conserved Hepatocyte nuclear factor-1a (HNF-1α) biding site were represented in this region. A G2289C single nucleotide polymorphism (SNP) in the intron 2 of porcine APOM gene detected as an Eco130I PCR–restriction fragment length polymorphism (PCR–RFLP) showed allele frequency differences among three purebreds. Association of the genotypes with fat deposition traits showed that different genotypes of porcine APOM gene were significantly associated with leaf fat weight (P < 0.05), backfat thickness at shoulder (P < 0.05), backfat thickness at thorax-waist (P < 0.05), backfat thickness at buttock (P < 0.01) and average backfat thickness over shoulder, thorax-waist and buttock (P < 0.01).  相似文献   

2.
Using PCR and inverse PCR techniques we obtained a 4,498 bp nucleotide sequence FN424076 encompassing the complete coding sequence of the porcine insulin receptor substrate 4 (IRS4) gene and its proximal promoter. The 1,269 amino acid porcine protein deduced from the nucleotide sequence shares 92% identity with the human IRS4 and possesses the same domains and the same number of tyrosine phosphorylation motifs as the human protein. We detected substitution FN424076:g.96C<G in the promoter region that segregates in Meishan and a synonymous substitution FN424076:g.1829T<C in the coding sequence with allele C present only in Meishan. Linkage mapping placed the IRS4 gene at position 82 cM on the current USDA–USMARC linkage map of porcine chromosome X. Association analyses were performed on 555 animals of 12th–15th generation of the Meishan × Large White cross and showed that both SNPs were highly significantly associated with backfat depth (P = 0.0005) and that the SNP FN424076:g1829T<C was also associated with loin depth (P = 0.017). The Meishan alleles increased back fat depth and decreased loin depth. IRS4 can be considered a positional candidate gene for at least some of the QTL located at the centromeric region of porcine chromosome X.  相似文献   

3.
Glutamine: fructose-6-phosphate amidotransferase (GFAT) is the rate-limiting enzyme of the hexosamine synthesis pathway, which plays important roles in insulin resistance and glucose toxicity. GFAT1 is one of the two isoenzymes of GFAT. In the present study, we cloned cDNA sequence of the porcine GFAT1 gene and identified a GFAT1 splice variant (designed GFAT1-L) that contains a 54 bp insertion within the coding region. Nested RT–PCR revealed that GFAT1 was ubiquitously expressed in all tested tissues, but GFAT1-L was only expressed in skeletal muscle and heart, not in liver, spleen, lung, kidney, small intestine, stomach and fat tissue, suggested that GFAT1-L was selectively expressed in striate muscle in pig. Using both the somatic cell hybrid panel and radiation hybrid panel, the GFAT1 gene was mapped to porcine chromosome 3q21-q27, in which several significant QTLs for carcass traits were found. Among the SNPs we found in porcine GFAT1 gene, only the g. 101A>G polymorphism which located in intron 8 was polymorphic in two pig populations we investigated in the study. Association analyses revealed that the g. 101A>G polymorphism has a significant effect on lean meat percentage (P < 0.05), corrected backfat thickness (P < 0.05) and backfat at the rump (P < 0.05).  相似文献   

4.
5.
Ren F  Jiang H  Sun J  He L  Li W  Wang Y  Wang Q 《Molecular biology reports》2011,38(4):2383-2393
A full-length metallothionein-1(MT-1) cDNA was cloned from the Chinese mitten crab, Eriocheir sinensis, based upon the hepatopancreas cDNA library. The full-length cDNA contained a single 180 bp open reading frame that encoded a 59 amino acid protein. The deduced amino acid sequence was cysteine (Cys)-rich, with residues observed in patterns characteristic of other reported MTs: Cys–X–Cys, Cys–X–X–Cys, or Cys–X–X–X–Cys. Gene structure obtained via PCR yielded a 3816 bp gene, which was comprised of three exons and two introns arranged in a “3 + 2” pattern. The cloned 5′flanking region (1,735 bp) contained several predicted binding sites, which included MREs, AP-1, SP1, USF, GATA, HNF-1, and HSF. MT-1 mRNA expression analysis revealed that while levels were highest in the hepatopancreas, expression was abundant in testis and thoracic ganglia, moderate in intestine (P < 0.05), and weak in other tissues (P < 0.05). MT-1 mRNA expression exhibited reproductive variation in the male, with levels approximately tenfold greater in August, during seasonal gonadal maturation, compared to other times of the year. Cu2+ exposure via tank water (0–1 mg/l for 7 days) resulted in a dose-dependent bell curve response in MT-1 mRNA expression, with peak expression observed after exposure to 0.1 mg/l Cu2+. A time course experiment (0.1 mg/l Cu2+ over 9 days) revealed MT-1 mRNA expression peaked sharply on day 5 before gradually decreasing with prolonged exposure. In the present report, we provide sequence analysis of the first MT-1 gene cloned in E. sinensis, and evidence that its physiological and toxicological regulation is evolutionary conserved.  相似文献   

6.
CRP3 is the muscle-specific form of the cysteine and glycine-rich protein family and plays an important role in myofiber differentiation. Here we isolated and characterized its coding gene CSRP3 from porcine muscle. Phylogenic analyses demonstrated that CSRP3 diverged first and is distinguished from two other members, CSRP1 and CSRP2. CSRP3 mRNA was up-regulated during the development of porcine embryonic skeletal muscle, indicating its potential importance in muscle growth. Genetic variant analyses detected multiple variations in an approximately 400 bp region covering exon 4 and its downstream intron, and two haplotypes were identified by sequencing. One of synonymous substitutions C1924T was used for linkage and association analyses. It was revealed that the substitution of C1924T had significant associations with firmness (P < 0.01), Lab Loin pH, Off Flavor Score and Water Holding Capacity (P < 0.05), and a suggestive effect (P < 0.1) on Flavor Score and Average Glycolytic Potential in a Berkshire × Yorkshire F2 population. The association analyses results agreed with the gene’s localization to a QTL region for meat quality traits on porcine chromosome 2p14-17 demonstrated by both linkage mapping and RH mapping. These results provide fundamental evidence for CSRP3 as a functional candidate gene affecting pig meat quality.  相似文献   

7.
8.
9.
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine. Two genes (MAT1A and MAT2A) encode for the catalytic subunit of MAT, while a third gene (MAT2β) encodes for a regulatory subunit (MAT II β) that regulates the activity of the MAT2A-encoded isoenzyme and intracellular S-adenosylmethionine levels. Our previous work identified MAT2β as a candidate gene for intramuscular fat (IMF) deposition in porcine skeletal muscle by microarray technology. Here, we cloned porcine MAT2β cDNA and compared its expression pattern in subcutaneous adipose tissue and skeletal muscle from obese (Rongchang Breed) and lean (Pig Improvement Company, PIC) pigs (n = 6). The porcine MAT2β cDNA was 1,800 bp long and encodes for 334 amino acids sharing high similarity with other species. MAT2β is expressed at a higher level in liver and duodenum, followed by the stomach, fat and longissinus dorsi muscle. As expected, both subcutaneous fat content and IMF content were higher in obese than in lean pigs (both P < 0.01). MAT2β mRNA abundance was lower in both subcutaneous adipose tissue and skeletal muscle in obese pigs compared with lean pigs (both P < 0.01). MAT II β protein content was lower in skeletal muscle in obese than in lean pigs (P < 0.05), whereas the opposite was observed in subcutaneous adipose tissue (P < 0.01). These data demonstrated an obesity-related expression variation of the MAT II β subunit in skeletal muscle and adipose tissue in pigs, and suggest a novel role for the MAT2β gene in regulation of IMF deposition in skeletal muscle.  相似文献   

10.
He X  Chu MX  Qiao L  He JN  Wang PQ  Feng T  Di R  Cao GL  Fang L  An YF 《Molecular biology reports》2012,39(3):2901-2907
The STAT5A gene was studied as a candidate gene for five milk production traits (milk yield at 305 days, protein percentage, fat percentage, lactose percentage and dry matter percentage) in Holstein cows. According to the sequence of bovine STAT5A gene, two pairs of primers (P1 and P2) were designed to detect polymorphisms of STAT5A gene in 401 Holstein cows by PCR-RFLP and PCR-SSCP. The results showed that the products amplified by primers P1 and P2 displayed polymorphisms. For P1, three genotypes (AA, AG, and GG) were detected, and the frequency of AA/AG/GG was 0.252/0.486/0.262, respectively. Sequence analysis revealed a single nucleotide substitution A–G at 14217 bp (GenBank NC_007317) of bovine STAT5A gene while compared GG genotype with AA genotype. The differences of the least squares means for the four milk production traits (milk yield at 305 days, fat percentage, lactose percentage and dry matter percentage) between AA, AG and GG were not significant (P > 0.05). Least squares mean of protein percentage for AG or GG was significantly higher than that for AA (P < 0.05); the difference of the least squares mean for protein percentage was not significant between AG and GG (P > 0.05). For P2, three genotypes (CC, CT, and TT) were detected in Holstein cows, and the frequency of CC/CT/TT was 0.751/0.234/0.015, respectively. Sequencing revealed an insertion CCT at 17266 (NC_007317) of bovine STAT5A gene while compared CC genotype with TT genotype. The differences of the least squares means for the three milk production traits (protein percentage, lactose percentage and dry matter percentage) between CC, CT and TT were not significant (P > 0.05). Least squares mean of milk yield at 305 days for TT or CT was significantly higher than that for CC (P < 0.05); the difference of the least squares mean for milk yield at 305 days was not significant between TT and CT (P > 0.05). Least squares mean of fat percentage for CC or CT was significantly higher than that for TT (P < 0.05); the difference of the least squares mean for fat percentage was not significant between CC and CT (P > 0.05). The results preliminarily indicated that allele G of A14217G polymorphic site of STAT5A gene is a potential DNA marker for improving protein percentage in dairy cattle, 17266indelCCT polymorphic site of STAT5A gene is a potential DNA marker for improving milk yield at 305 days and fat percentage in dairy cattle.  相似文献   

11.
JHDM1A, a member of the JHDM (JmjC-domain-containing histone demethylase) family, plays an central role in gene silencing, cell cycle, cell growth and cancer development through histone H3K36 demethylation modification. Here reported the cloning, expression, chromosomal location and association analysis with growth traits of porcine JHDM1A gene. Sequence analysis showed that the porcine JHDM1A gene encodes 1,162 amino acids and contains JmjC, F-box, and CXXC zinc-finger domains, which coding sequence and deduced protein shares 91 and 99% similarity with human JHDM1A, respectively. Spatio-Temporal expression analysis indicated that the mRNA expression of porcine JHDM1A had significantly higher levels in the middle (65 days) and later (90 days) period’s embryo skeletal muscle than that of 33 days, and showed a ubiquitously expression but with the highest abundance in kidney, lung and liver of an adult pig. Radiation hybrid mapping and the following linkage mapping data indicate that JHDM1A maps to 2p17 region of pig chromosome 2 (SSC2). Allele frequency differences were detected in different pig breeds and an association study was performed with a SNP within 3′UTR. The results showed that there is a tendency for allele frequencies to differ between the fast growth breeds (Yorkshire) and slow growth pig breeds (Qingping pigs, Yushan Black pigs, Erhualian pigs and Dahuabai pigs). The association analysis using a Berkshire × Yorkshire F2 population indicated that the C224G polymorphism had a highly significant association with average daily gain on test (P < 0.01), a trend association with average back fat thickness (P < 0.07), and significant associations (P < 0.01) on percent of average drip loss, Fiber Type II Ratio, muscle shear force and average lactate content in μmol/g. This study provides the first evidence that JHDM1A is differentially expressed in porcine embryonic skeletal muscle and associated with meat growth and quality traits.  相似文献   

12.
Cathepsin K (CTSK) was selected as a candidate gene for fat deposition in pigs because recently, in human and mouse, it was shown that this lysosomal proteinase is an obesity marker. A single nucleotide polymorphism (SNP) was identified in intron 4 of the porcine CTSK gene (g.15G>A; FM209043). Allele frequencies of this polymorphism were analysed in seven pig breeds. Radiation hybrid mapping confirmed the localization of CTSK to porcine chromosome 4, close to the FAT1 QTL region. Three populations of pigs (one Italian Large White and two Italian Duroc groups of pigs) were selected for association analysis. In the Italian Large White breed the g.15G>A SNP was not informative. Association analysis including all Italian Duroc pigs showed that the CTSK marker was associated with back fat thickness and lean cuts (P < 0.01), and average daily gain and feed:gain ratio (P < 0.05) estimated breeding values.  相似文献   

13.
In this study, two novel SNPs (EU743939:g.5174T>C in intron 4 and EU743939:g.8350C>A in intron 7) in TNNI1 and one SNP (EU696779:g.1167C>T in intron 3) in TNNI2 were identified by PCR–RFLP (PCR restriction fragment length polymorphism) using XbaI, MspI and SmaI restriction enzyme, respectively. The allele frequencies of three novel SNPs were determined in the genetically diverse pig breeds including ten Chinese indigenous pigs and three Western commercial pig breeds. Association analysis of the SNPs with the carcass traits were conducted in a Large White × Meishan F2 pig population. The linkage of two SNPs (g.5174T>C and g.8350C>A) in TNNI1 gene had significant effect on fat percentage. Besides these, the g.5174T>C polymorphism was also significantly associated with skin percentage (P < 0.05), shoulder fat thickness (P < 0.05) and backfat thickness between sixth and seventh ribs (P < 0.05). The significant effects of g.1167C>T polymorphism in TNNI2 gene on fat percentage (P < 0.01), lean meat percentage (P < 0.05), lion eye area (P < 0.05), thorax–waist backfat thickness (P < 0.01) and average backfat thickness (P < 0.05) were also found.  相似文献   

14.
Adipose triglyceride lipase (ATGL) is a triglyceride hydrolysis lipase and is generally related to lipid metabolism in animals. The ATGL gene was well studied in mammals, however very less was known in birds that differed significantly with mammals for lipid metabolism. In this study, cloning, mRNA real time and association analysis was performed to characterize the ATGL gene in birds. Results showed that the obtained ATGL gene cDNA of parrot, quail, duck were 1,651 bp (NCBI accession number: GQ221784), 1,557 bp (NCBI accession number: GQ221783) and 1,440 bp each, encoded 481-, 482- and 279-amino acid (AA) peptide, respectively. The parrot ATGL (pATGL) gene was found to predominantly express in breast muscle and leg muscle, and very higher ATGL mRNA level was also found in heart, abdominal fat and subcutaneous fat. The quail ATGL (qATGL) gene was also predominantly expressed in breast muscle and leg muscle, and then to a much lesser degree in heart. The duck ATGL (dATGL) gene was found to predominantly express in subcutaneous fat and abdominal fat, quite higher ATGL mRNA was also found in heart, spleen, breast muscle and leg muscle. Blast analyses indicated the high homology of ATGL and its patatin region, and moreover, and the active serine hydrolase motif (“GASAG” for “GXSXG”) and the glycine rich motif (“GCGFLG” for “GXGXXG”) were completely conservative among 14 species. Association analyses showed that c.950+24C>A, c.950+45C>G, c.950+73G>A, c.950+83C>T and c.950+128delA of chicken ATGL gene (cATGL) were all significantly or highly significantly with cingulated fat width (CFW) (P < 0.05 or P < 0.01), and c.777−26C>A, c.950+45C>G, c.950+73G>A and c.950+118C>T were all significantly or highly significantly with pH value of breast muscle (BMPH) (P < 0.05).  相似文献   

15.
16.
Lipin1 has been documented to play an important role in adipogenesis. In the present study, the mRNA expression level of lipin1 and its isoforms in longissimus dorsi muscle were determined by semi-quantification RT-PCR in lean PIC and obese Rongchang pigs. Further, we determined mRNA expression for lipin1 and its two isoforms in Rongchang obese pigs which had either a high or low intramuscular fat content. We demonstrate for the first time that porcine lipin1 has two alternative forms, lipin-α and lipin-β. Unlike mice and humans where the lipin-β has 99 more nucleotides than lipin-α, we found that in swine, lipin-β has 108 more nucleotides than lipin-α. Our results indicate that the longissimus dorsi muscle of Rongchang obese pigs have a higher level of mRNA expression for lipin1 and its isoforms than PIC lean pigs. Furthermore, Rongchang pigs with higher intramuscular fat content had a higher lipin1 and lipin-β mRNA expression in longissimus dorsisi muscle than Rongchang pigs with lower intramuscular fat content (P < 0.05), whereas no difference was seen in lipin-α mRNA expression between Rongchang pigs with high or low intramuscular fat. The ratio of lipin-β mRNA to lipin-α mRNA was also significantly different between Rongchang pigs distinguished by a high intramuscular fat content compared with those with low intramuscular fat (P < 0.05). These data suggested that the lipin1 gene may have a crucial effect on body lipid accumulation in pigs, whereas the lipin-β isoform may play an important role in intramuscular fat deposition in obese pigs.  相似文献   

17.
Ladybird-like genes were recently identified in mammals. The first member characterized, Lbx1, is expressed in developing skeletal muscle and the nervous system. However, little is known about the porcine Lbx1 gene. In the present study, we cloned and characterized Lbx1 from porcine muscle. RT-PCR analyses showed that Lbx1 was highly expressed in porcine skeletal muscle tissues. And we provide the first evidence that Lbx1 has a certain regulated expression pattern during the postnatal period of the porcine skeletal muscle development. Lbx1 gene expressed at higher levels in biceps femoris muscles compared with masseter, semitendinosus and longissimus dorsi muscles in Meishan pigs. Phylogenetic tree was constructed by aligning the amino acid sequences of different species. Moreover, single nucleotide polymorphism (SNP) scanning in the Lbx1 genomic fragment identified two mutations, g.752A>G and g.−1559C>G. Association analysis in our experimental pig populations showed that the mutation of g.752A>G was significantly associated with loin muscle area (P < 0.05) and internal fat rate (P < 0.05). Our results suggest that the Lbx1 gene might be a candidate gene of carcass traits and provide useful information for further studies on its roles in porcine skeletal muscle.  相似文献   

18.
We recently showed that a polymorphism in the fat mass and obesity associated (FTO) gene (AM931150: g.276T > G) is associated with fat deposition traits in pigs. To confirm this result, we genotyped this polymorphism in an Italian Duroc population made up by 313 performance tested pigs with known estimated breeding values (EBVs) for average daily gain, back fat thickness (BFT), feed:gain ratio, lean cuts (LC), and visible intermuscular fat (VIF, a measure of intermuscular fat in the hams). In addition, we genotyped 148 commercial heavy pigs for which several fat deposition traits and lean meat percentage were measured. The results of the association analyses confirmed the effect of the FTO mutation on obesity-related traits (VIF, BFT and LC) in the Italian Duroc pigs (P < 0.01) and in the commercial pigs (intramuscular fat content of different muscles, P < 0.05 or P < 0.10; lean meat content, P < 0.05; BFT, P < 0.05; intermuscular fat content in the hams, P < 0.05).  相似文献   

19.
F-box proteins are quite significant ubiquitin-proteasome pathway regulators in eukaryotic cells. FBXO40, a member of this large family, alters its expression pattern in muscle atrophy. Here we isolated most of the verified porcine FBXO40 coding sequence (CDS) (2258 bp) and assigned it to the porcine chromosome 13q4.1-4.6 by using the INRA-Minnesota porcine radiation hybrid panel, and we also explored the tissue expression distributions, which is relatively high in longissimus dorsi muscle, heart, low in kidney, small intestine, brain, hypophysis, lymphonode, thymus, spleen, large intestine, ovary, stomach, and undetectable in testis, liver, uterus and thyroid gland. Inferring phylogenetic tree was constructed to study the evolutionary implications. Moreover, a HindII (HincII)-RFLP (A/C) polymorphism in 3′-untranslated region (3′-UTR) of porcine FBXO40 gene was demonstrated by sequencing and PCR-restriction fragment length polymorphism (PCR-RFLP) analysis. Statistical analysis result of this polymorphism showed that the allele A was predominant in all detected indigenous breeds, but C in western introduced commercial breeds. The SNP was further analyzed in our experimental pig population including Tongcheng, Landrace, Large White, and crossbreds of Large White × (Landrace × Tongcheng) and Landrace × (Large White × Tongcheng). The association analysis results indicated that the A/C base substitution was associate with some hematological indexes, the hemoglobin concentration (P < 0.0001), mean corpuscular volume hemoglobin concentration (P = 0.0002) and mean corpuscular volume (P = 0.0138).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号