首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The discovery of biotype diversity of soybean aphid (SA: Aphis glycines Matsumura) in North America emphasizes the necessity to identify new aphid-resistance genes. The soybean [Glycine max (L.) Merr.] plant introduction (PI) 200538 is a promising source of SA resistance because it shows a high level of resistance to a SA biotype that can overcome the SA-resistance gene Rag1 from ‘Dowling’. The SA-resistance gene Rag2 was previously mapped from PI 200538 to a 10-cM marker interval on soybean chromosome 13 [formerly linkage group (LG) F]. The objective of this study was to fine map Rag2. This fine mapping was carried out using lines derived from 5,783 F2 plants at different levels of backcrossing that were screened with flanking genetic markers for the presence of recombination in the Rag2 interval. Fifteen single nucleotide polymorphism (SNP) markers and two dominant polymerase chain reaction-based markers near Rag2 were developed by re-sequencing target intervals and sequence-tagged sites. These efforts resulted in the mapping of Rag2 to a 54-kb interval on the Williams 82 8× assembly (Glyma1). This Williams 82 interval contains seven predicted genes, which includes one nucleotide-binding site-leucine-rich repeat gene. SNP marker and candidate gene information identified in this study will be an important resource in marker-assisted selection for aphid resistance and for cloning the gene.  相似文献   

2.
The soybean aphid [Aphis glycines Matsumura] is an important pest of soybean [Glycine max (L.) Merr.] in North America. Single dominant genes in the cultivars ‘Dowling’ and ‘Jackson’ control resistance to the soybean aphid. The gene in Dowling was named Rag1, and the genetic relationship between Rag1 and the gene in Jackson is not known. The objectives of this study were to map the locations of Rag1 and the Jackson gene onto the soybean genetic map. Segregation of aphid resistance and simple sequence repeat (SSR) markers in F 2:3 populations developed from crosses between Dowling and the two susceptible soybean cultivars ‘Loda’ and ‘Williams 82’, and between Jackson and Loda, were analyzed. Both Rag1 and the Jackson gene segregated 1:2:1 in the F 2:3 populations and mapped to soybean linkage group M between the markers Satt435 and Satt463. Rag1 mapped 4.2 cM from Satt435 and 7.9 cM from Satt463. The Jackson gene mapped 2.1 cM from Satt435 and 8.2 cM from Satt463. Further tests to determine genetic allelism between Rag1 and the Jackson gene are in progress. The SSR markers flanking these resistance genes are being used in marker-assisted selection for aphid resistance in soybean breeding programs. Trade and manufacturers’ names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

3.

Key Message

The Rag2 region was frequently identified among 21 F 2 populations evaluated for soybean aphid resistance, and dominant gene action and single-gene resistance were also commonly identified.

Abstract

The soybean aphid [Aphis glycines Matsumura (Hemiptera: Aphididae)] is one of the most important insect pests of soybean [Glycine max (L.) Merr] in the northern USA and southern Canada, and four resistance loci (Rag1rag4) have been discovered since the pest was identified in the USA in 2000. The objective of this research was to determine whether resistance expression in recently identified soybean aphid-resistant plant introductions (PIs) was associated with the four Rag loci using a collection of 21 F2 populations. The F2 populations were phenotyped with soybean aphid biotype 1, which is avirulent on plants having any of the currently identified Rag genes, using choice tests in the greenhouse and were tested with genetic markers linked to the four Rag loci. The phenotyping results indicate that soybean aphid resistance is controlled by a single dominant gene in 14 PIs, by two genes in three PIs, and four PIs had no clear Mendelian inheritance patterns. Genetic markers flanking Rag2 were significantly associated with aphid resistance in 20 PIs, the Rag1 region was significantly identified in five PIs, and the Rag3 region was identified in one PI. These results show that single dominant gene action at the Rag2 region may be a major source for aphid resistance in the USDA soybean germplasm collection.  相似文献   

4.

Key message

Five soybean plant introductions expressed antibiosis resistance to multiple soybean aphid biotypes. Two introductions had resistance genes located in the Rag1, Rag2, and Rag3 regions; one introduction had resistance genes located in the Rag1, Rag2, and rag4 regions; one introduction had resistance genes located in the Rag1 and Rag2 regions; and one introduction had a resistance gene located in the Rag2 region.

Abstract

Soybean aphid (Aphis glycines Matsumura) is the most important soybean [Glycine max (L.) Merr.] insect pest in the USA. The objectives of this study were to characterize the resistance expressed in five plant introductions (PIs) to four soybean aphid biotypes, determine the mode of resistance inheritance, and identify markers associated with genes controlling resistance in these accessions. Five soybean PIs, from an initial set of 3000 PIs, were tested for resistance against soybean aphid biotypes 1, 2, 3, and 4 in choice and no-choice tests. Of these five PIs, PI 587663, PI 587677, and PI 587685 expressed antibiosis against all four biotypes, while PI 587972 and PI 594592 expressed antibiosis against biotypes 1, 2, and 3. F2 populations derived from PI 587663 and PI 587972 were evaluated for resistance against soybean aphid biotype 1, and populations derived from PIs 587677, 587685, and 594592 were tested against biotype 3. In addition, F2:3 plants were tested against biotypes 2 and 3. Genomic DNA from F2 plants was screened with markers linked to Rag1, Rag2, Rag3, and rag4 soybean aphid-resistance genes. Results showed that PI 587663 and PI 594592 each had three genes with variable gene action located in the Rag1, Rag2, and Rag3 regions. PI 587677 had three genes with variable gene action located in the Rag1, Rag2 and rag4 regions. PI 587685 had one dominant gene located in the Rag1 region and an additive gene in the Rag2 region. PI 587972 had one dominant gene located in the Rag2 region controlling antixenosis- or antibiosis-type resistance to soybean aphid biotypes 1, 2, or 3. PIs 587663, 587677, and 587685 also showed antibiosis-type resistance against biotype 4. Information on multi-biotype aphid resistance and resistance gene markers will be useful for improving soybean aphid resistance in commercial soybean cultivars.
  相似文献   

5.
The soybean aphid (SA: Aphis glycines Matsumura) is a worldwide pest of soybean (Glycine max [L.] Merr.). The objectives of this study were to identify the type of aphid resistance and the resistance phenotype in soybean line ‘P203’, and to map the relative position of the gene involved. Compared with cultivars ‘P746’ and ‘Dongnong 47’, P203 was demonstrated to possess antixenosis resistance. P203 prevented aphids from reproducing in a choice test, but the resistance level decreased significantly in a no-choice test at 11 and 21 days after infestation. Analysis of 273 Dongnong 47/P203 F2 plants and confirmed using 260 F2:3 families revealed that a single dominant gene from P203 was positioned between marker loci Sat_377 and Satt409 on chromosome 8. The gene was further mapped to a 1.57 Mb interval flanked by marker loci BARCSOYSSR_08_1451 and BARCSOYSSR_08_1527. We developed five new SSR markers in the target interval and the resistance locus mapped between new markers SSR_08_75 and SSR_08_88 with the genetic distance of 1.1 and 1.0 cM corresponding to a physical distance of 192 kb on the Williams 82 8X draft genome assembly (Glyma1.01). A single serine/threonine protein kinase gene is present in this region, suggesting that the SA resistance mechanism in P203 may be different from those previously reported. Therefore, the resistance gene could very well be novel, and could be valuable in soybean aphid resistance breeding programs.  相似文献   

6.
A novel locus for soybean aphid resistance   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest on soybean [Glycine max (L.) Merr.] in North America. Aphid resistance has recently been found on plant introduction (PI) 567543C, but little is known about its genetic control. The objectives of this study were to identify the resistance genes in PI 567543C with molecular markers and validate them in a different genetic background. A mapping population of 249 F4 derived lines from a cross between PI 567543C and a susceptible parent was investigated for aphid resistance in both the greenhouse and the field. The broad sense heritability of aphid resistance in the field trial was over 0.95. The segregation of aphid resistance in this population suggests a major gene controlling the resistance. Bulked segregant analysis with molecular markers revealed a potential genomic region. After saturating this putative region with more markers, a genetic locus was mapped in an interval between Sat_339 and Satt414 on chromosome 16 (linkage group J) using the composite interval mapping method. This locus explained the majority of the phenotypic variation ranging from 84.7% in the field trial to 90.4% in the greenhouse trial. Therefore, the aphid resistance in PI 567543C could be mainly controlled by this gene. This aphid resistance gene was mapped on a different chromosome than the other resistance genes reported previously from other resistant germplasms. This gene appears to be additive based on the aphid resistance of the heterozygous lines at this locus. Thus, a new symbol Rag3 is used to designate this gene. Moreover, Rag3 was confirmed in a validation population. This new aphid-resistance gene could be valuable in breeding aphid resistant cultivars.  相似文献   

7.
Soybean [Glycine max (L.) Merr.] continues to be plagued by the soybean aphid (Aphis glycines Matsumura: SA) in North America. New soybean resistance sources are needed to combat the four identified SA biotypes. The objectives of this study were to determine the inheritance of SA resistance in PI 587732 and to map resistance gene(s). For this study, 323 F2 and 214 F3 plants developed from crossing PI 587732 to two susceptible genotypes were challenged with three SA biotypes and evaluated with genetic markers. Choice tests showed that resistance to SA Biotype 1 in the first F2 population was controlled by a gene in the Rag1 region on chromosome 7, while resistance to SA Biotype 2 in the second population was controlled by a gene in the Rag2 region on chromosome 13. When 134 F3 plants segregating in both the Rag1 and Rag2 regions were tested with a 1:1 mixture of SA Biotypes 1 and 2, the Rag2 region and an interaction between the Rag1 and Rag2 regions were significantly associated with the resistance. Based on the results of the non-choice tests, the resistance gene in the Rag1 region in PI 587732 may be a different allele or gene from Rag1 from Dowling because the PI 587732 gene showed antibiosis type resistance to SA Biotype 2 while Rag1 from Dowling did not. The two SA resistance loci and genetic marker information from this study will be useful in increasing diversity of SA resistance sources and marker-assisted selection for soybean breeding programs.  相似文献   

8.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is one of the most destructive insect pests on soybeans in the United States. One method for managing this pest is through host plant resistance. Since its arrival in 2000, 4 aphid biotypes have been identified that are able to overcome soybean aphid resistance (Rag) genes. A soybean aphid isolate collected from Moline, Illinois readily colonized soybean plants with the soybean aphid resistance gene Rag2, unlike biotypes 1 and 2, but similar to soybean aphid biotype 3. Two no‐choice experiments compared the virulence of the Moline isolate with biotype 3. In both experiments, differences in aphid population counts were not significant (P > 0.05) on soybean genotypes LD08–12957a (Rag2) and LD11–5413a (Rag2), but the aphid counts for the Moline isolate were significantly (P < 0.05) lower than the aphid counts for the biotype 3 isolate on the soybean genotypes Dowling (Rag1), LD05–16611 (Rag1), LD11–4576a (Rag1), and PI 567598B (rag1b and rag3). The Moline isolate was a variant of aphid biotype 3, which is the first report showing that soybean aphid isolates classified as the same biotype, based on virulence against specific Rag genes, can differ in aggressiveness or ability to colonize specific host genotypes.  相似文献   

9.
The soybean aphid (Aphis glycines Matsumura) is the most damaging insect pest of soybean [Glycine max (L.) Merr.] in North America. New soybean aphid biotypes have been evolving quickly and at least three confirmed biotypes have been reported in USA. These biotypes are capable of defeating most known aphid resistant soybean genes indicating the need for identification of new genes. Plant Introduction (PI) 567301B was earlier identified to have antixenosis resistance against biotype 1 and 2 of the soybean aphid. Two hundred and three F7:9 recombinant inbred lines (RILs) developed from a cross of soybean aphid susceptible cultivar Wyandot and resistant PI 567301B were used for mapping aphid resistance genes using the quantitative trait loci (QTL) mapping approach. A subset of 94 RILs and 516 polymorphic SNP makers were used to construct a genome-wide molecular linkage map. Two candidate QTL regions for aphid resistance were identified on this linkage map. Fine mapping of the QTL regions was conducted with SSR markers using all 203 RILs. A major gene on chromosome 13 was mapped near the previously identified Rag2 gene. However, an earlier study revealed that the detached leaves of PI 567301B had no resistance against the soybean aphids while the detached leaves of PI 243540 (source of Rag2) maintained aphid resistance. These results and the earlier finding that PI 243540 showed antibiosis resistance and PI 567301B showed antixenosis type resistance, indicating that the aphid resistances in the two PIs are not controlled by the same gene. Thus, we have mapped a new gene near the Rag2 locus for soybean aphid resistance that should be useful in breeding for new aphid-resistant soybean cultivars. Molecular markers closely linked to this gene are available for marker-assisted breeding. Also, the minor locus found on chromosome 8 represents the first reported soybean aphid-resistant locus on this chromosome.  相似文献   

10.

Key message

Two novel QTLs conferring aphid resistance were mapped and validated on soybean chromosomes 8 and 16, respectively. Closely linked markers were developed to assist breeding for aphid resistance.

Abstract

Soybean aphid, Aphis glycines Matsumura, is a highly destructive pest for soybean production. E08934, a soybean advanced breeding line derived from the wild soybean Glycine soja 85-32, has shown strong resistance to aphids. To dissect the genetic basis of aphid resistance in E08934, a mapping population (070020) consisting of 140 F3-derived lines was developed by crossing E08934 with an aphid-susceptible line E00003. This mapping population was evaluated for aphid resistance in a greenhouse trial in 2010 and three field trials in 2009, 2010, and 2011, respectively. The broad-sense heritability across the field trials was 0.84. In the mapping population 070020, two major quantitative trait loci (QTL) were detected as significantly associated with aphid resistance, and designated as Rag6 and Rag3c, respectively. Rag6 was mapped to a 10.5 centiMorgan (cM) interval between markers MSUSNP08-2 and Satt209 on chromosome 8, explaining 19.5–46.4% of the phenotypic variance in different trials. Rag3c was located at a 7.5 cM interval between markers MSUSNP16-10 and Sat_370 on chromosome 16, explaining 12.5–22.9% of the phenotypic variance in different trials. Rag3c had less resistance effect than Rag6 across all the trials. Furthermore, Rag6 and Rag3c were confirmed in two validation populations with different genetic backgrounds. No significant interaction was detected between Rag6 and Rag3c in either the mapping population or the validation populations. Both Rag6 and Rag3c were indicated as conferring antibiosis resistance to aphids by a no-choice test. The new aphid-resistance gene(s) derived from the wild germplasm G. soja 85-32 are valuable in improving soybeans for aphid resistance.
  相似文献   

11.
Performance and prospects of Rag genes for management of soybean aphid   总被引:1,自引:0,他引:1  
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an invasive insect pest of soybean [Glycine max (L.) Merr. (Fabaceae)] in North America, and it has led to extensive insecticide use in northern soybean‐growing regions there. Host plant resistance is one potential alternative strategy for managing soybean aphid. Several Rag genes that show antibiosis and antixenosis to soybean aphid have been recently identified in soybean, and field‐testing and commercial release of resistant soybean lines have followed. In this article, we review results of field tests with soybean lines containing Rag genes in North America, then present results from a coordinated regional test across several field sites in the north‐central USA, and finally discuss prospects for use of Rag genes to manage soybean aphids. Field tests conducted independently at multiple sites showed that soybean aphid populations peaked in late summer on lines with Rag1 or Rag2 and reached economically injurious levels on susceptible lines, whereas lines with a pyramid of Rag1 + Rag2 held soybean aphid populations below economic levels. In the regional test, aphid populations were generally suppressed by lines containing one of the Rag genes. Aphids reached putative economic levels on Rag1 lines for some site years, but yield loss was moderated, indicating that Rag1 may confer tolerance to soybean aphid in addition to antibiosis and antixenosis. Moreover, no yield penalty has been found for lines with Rag1, Rag2, or pyramids. Results suggest that use of aphid‐resistant soybean lines with Rag genes may be viable for managing soybean aphids. However, virulent biotypes of soybean aphid were identified before release of aphid‐resistant soybean, and thus a strategy for optimal deployment of aphid‐resistant soybean is needed to ensure sustainability of this technology.  相似文献   

12.
Genetic linkage mapping of the soybean aphid resistance gene in PI 243540   总被引:1,自引:0,他引:1  
The soybean aphid (Aphis glycines Matsumura) is a pest of soybean [Glycine max (L.) Merr.] in many soybean growing countries of the world, mainly in Asia and North America. A single dominant gene in PI 243540 confers resistance to the soybean aphid. The objectives of this study were to identify simple sequence repeat (SSR) markers closely linked to the gene in PI 243540 and to position the gene on the consensus soybean genetic map. One hundred eighty-four F(2) plants and their F(2:3) families from a cross between the susceptible cultivar Wyandot and PI 243540, and the two parental lines were screened with the Ohio biotype of soybean aphid using greenhouse choice tests. A SSR marker from each 10-cM section of the consensus soybean map was selected for bulked segregant analysis (BSA) to identify the tentative genomic location of the gene. The BSA technique was useful to localize the gene to a genomic region in soybean linkage group (LG) F. The entire F(2) population was then screened with polymorphic SSR markers from this genomic region and a linkage map with nine SSR markers flanking the gene was constructed. The aphid resistance gene was positioned in the interval between SSR markers Satt334 and Sct_033 on LG F. These SSR markers will be useful for marker assisted selection of this gene. The aphid resistance gene from PI 243540 mapped to a different linkage group than the only named soybean aphid resistance gene, Rag1, from 'Dowling'. Also, the responses of the two known biotypes of the soybean aphid to the gene from PI 243540 and Rag1 were different. Thus, the aphid resistance gene from PI 243540 was determined to be a new and independent gene that has been named Rag2.  相似文献   

13.
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is one of the most destructive pests in the cultivation of soybean (Glycine max (L.) Merr.) worldwide. Markers based on the SCN resistance gene will enable efficient marker-assisted selection (MAS). We sequenced the candidate gene rhg1 in six resistant and two susceptible soybean genotypes and identified 37 SNPs (single nucleotide polymorphisms) among the sequences, of which 11 were in the coding region. Seven of these 11 SNPs led to changes in the amino acid sequence of the gene. The amino acid sequence we obtained differs from the previously published one by a stretch of 26–27 amino acids. Six codominant allele-specific SNP markers based on agarose gel detection were developed and tested in 70 genotypes, among which occurred only nine different haplotypes. Two neutrality tests (Tajima’s D and Fu and Li’s F) were significant for the six SNP loci in the 70 genotypes, which is consistent with intensive directional selection. A strong LD pattern was detected among five SNPs except 2868T > C. Two SNPs (689C > A and 757C > T) formed one haplotype (689C-757C) that was perfectly associated with SCN resistance. The new allele-specific PCR markers located in the alleged sequence of the rhg1 candidate gene, combined with the microsatellite marker BACR-Satt309, will significantly improve the efficiency of MAS during the development of SCN-resistant cultivars.  相似文献   

14.
Molecular mapping of soybean aphid resistance genes in PI 567541B   总被引:2,自引:0,他引:2  
The soybean aphid (Aphis glycines Matsumura) is an important pest of soybean [Glycine max (L.) Merr.] in North America since it was first reported in 2000. PI 567541B is a newly discovered aphid resistance germplasm with early maturity characteristics. The objectives of this study were to map and validate the aphid resistance genes in PI 567541B using molecular markers. A mapping population of 228 F3 derived lines was investigated for the aphid resistance in both field and greenhouse trials. Two quantitative trait loci (QTLs) controlling the aphid resistance were found using the composite interval mapping method. These two QTLs were localized on linkage groups (LGs) F and M. PI 567541B conferred resistant alleles at both loci. An additive × additive interaction between these two QTLs was identified using the multiple interval mapping method. These two QTLs combined with their interaction explained most of the phenotypic variation in both field and greenhouse trials. In general, the QTL on LG F had less effect than the one on LG M, especially in the greenhouse trial. These two QTLs were further validated using an independent population. The effects of these two QTLs were also confirmed using 50 advanced breeding lines, which were all derived from PI 567541B and had various genetic backgrounds. Hence, these two QTLs identified and validated in this study could be useful in improving soybean aphid resistance by marker-assisted selection.  相似文献   

15.
Resistance of soybean [Glycine max (L.) Merr.] to cyst nematode (SCN) (Heterodera glycines Ichinohe), one of the most destructive pathogens affecting soybean, involves a complex genetic system. The identification of QTLs associated with SCN resistance may contribute to the understanding of such system. The objective of this work was to identify and map QTLs for resistance to SCN Race 14 with the aid of molecular markers. BC3F2:3 and F2:3 populations, both derived from an original cross between resistant cv. Hartwig and the susceptible line BR-92–31983 were screened for resistance to SCN Race 14. Four microsatellite (Satt082, Sat_001, Satt574 and Satt301) and four RAPD markers (OPAA-11795, OPAE-08837, OPR-07548 and OPY-072030) were identified in the BC3F2:3 population using the bulked segregant analysis (BSA) technique. These markers were amplified in 183 F2:3 families and mapped to a locus that accounts for more than 40% of the resistance to SCN Race 14. Selection efficiency based on these markers was similar to that obtained with the conventional method. In the case of the microsalellite markers, which identify homozygous resistant genotypes, the efficiency was even higher. This new QTL has been mapped to the soybean linkage group D2 and, in conjunction with other QTLs already identified for SCN resistance, will certainly contribute to our understanding of the genetic basis of resistance of this important disease in soybean. Received: 12 October 1999 / Accepted: 14 April 2000  相似文献   

16.

Key message

A novel Rpp gene from PI 605823 for resistance to Phakopsora pachyrhizi was mapped on chromosome 19.

Abstract

Soybean rust, caused by the obligate biotrophic fungal pathogen Phakopsora pachyrhizi Syd. & P. Syd, is a disease threat to soybean production in regions of the world with mild winters. Host plant resistance conditioned by resistance to P. pachyrhizi (Rpp) genes has been found in numerous soybean accessions, and at least 10 Rpp genes or alleles have been mapped to six genetic loci. Identifying additional disease-resistance genes will facilitate development of soybean cultivars with durable resistance. PI 605823, a plant introduction from Vietnam, was previously identified as resistant to US populations of P. pachyrhizi in greenhouse and field trials. In this study, bulked segregant analysis using an F2 population derived from ‘Williams 82’ × PI 605823 identified a genomic region associated with resistance to P. pachyrhizi isolate GA12, which had been collected in the US State of Georgia in 2012. To further map the resistance locus, linkage mapping was carried out using single-nucleotide polymorphism markers and phenotypic data from greenhouse assays with an F2:3 population derived from Williams 82 × PI 605823 and an F4:5 population derived from ‘5601T’ × PI 605823. A novel resistance gene, Rpp7, was mapped to a 154-kb interval (Gm19: 39,462,291–39,616,643 Glyma.Wm82.a2) on chromosome 19 that is different from the genomic locations of any previously reported Rpp genes. This new gene could be incorporated into elite breeding lines to help provide more durable resistance to soybean rust.
  相似文献   

17.
The soybean aphid (Aphis glycines Matsumura) is a major pest on soybean [Glycine max (L.) Merr.] in North America. Aphid resistance has been found on plant introduction (PI) 567537, but its genetic characterization is unknown. The objectives of this study were to identify the resistance genes in PI 567537 using molecular markers and validate them in a different genetic background. A mapping population of 86 F4 lines from a cross between PI 567537 and a susceptible parent E00003 was investigated for aphid resistance in both greenhouse and field trials. A genomic region associated with the aphid resistance in PI 567537 was revealed on chromosome 16 (linkage group J) with molecular markers. This locus was coincidently located in the same region as Rag3 and explained most of the phenotypic variation, ranging from 87.4 % in the greenhouse trial to 78.9 % in the field trial. This resistance gene was further confirmed in an F2 population derived from a cross of PI 567537 × Skylla. The segregation of the F2 population indicated that the aphid resistance in PI 567537 was most likely controlled by a single dominant gene, which was the one we mapped in the F4-derived population. This gene was designated Rag3b since it is located in the same region as Rag3. The mapping of the aphid resistance gene in PI 567537 could be useful in marker-assisted selection when employing PI 567537 as an aphid resistance source.  相似文献   

18.
The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), poses a new threat to soybean, Glycine max (L.) Merrill (Fabaceae), production in the north central USA. As H. halys continues to spread and increase in abundance in the region, the interaction between H. halys and management tactics deployed for other pests must be determined. Currently, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is the most abundant and damaging insect pest of soybean in the region. Aphid‐resistant soybean, mainly with the Rag1 gene, is commercially available for management of A. glycines. Here, experiments were performed to evaluate the effects of Rag1 aphid‐resistant soybean on the mortality, development, and preference of H. halys. In a no‐choice test, mortality of H. halys reared on Rag1 aphid‐resistant soybean pods was significantly lower than when reared on aphid‐susceptible soybean pods (28 vs. 53%). Development time, adult weight, and proportion females of surviving adults did not differ when reared on Rag1 aphid‐resistant or aphid‐susceptible soybean pods. In choice tests, H. halys exhibited a preference for Rag1 aphid‐resistant over aphid‐susceptible soybean pods after 4 h, but not after 24 h. Halyomorpha halys exhibited no preference when tested with vegetative‐stage or reproductive‐stage soybean plants. The preference by H. halys for Rag1 aphid‐resistant soybean pods and the decreased mortality when reared on these pods suggests that the use of Rag1 aphid‐resistant soybean may favor this emerging pest in the north central USA.  相似文献   

19.
The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is a major pest of soybean, Glycine max (L.). Merr., that significantly reduces yield in northern production areas of North America. Insecticides are widely used to control soybean aphid outbreaks, but efforts are underway to develop host plant resistance as an effective alternative management strategy. Here, previously identified resistant lines were evaluated in laboratory tests against field-collected populations of soybean aphid and in field-plot tests over 2 yr in South Dakota. Six lines previously identified with resistance to soybean aphid--Jackson, Dowling, K1639, Cobb, Palmetto and Sennari--were resistant in this study, but relatively high aphid counts on Tie-feng 8 in field plots contrasted with its previously reported resistance. Bhart-PI 165989 showed resistance in one of two laboratory tests, but it had relatively large aphid infestations in both years of field tests. Intermediate levels of soybean aphid occurred in field plots on lines previously shown to have strong (Sugao Zairai, PI 230977, and D75-10169) or moderate resistance to soybean aphid (G93-9223, Bragg, Braxton, and Tracy-M). Sugao Zairai also failed to have a significant proportion of resistant plants in two laboratory tests against aphids field-collected in 2008, but it was resistant in laboratory tests with aphids collected in 2002, 2005, and 2006. Overall, results showed that lines with Rag (i.e., Jackson) or Rag1 gene (i.e., Dowling) had low aphid numbers, whereas lines with Rag2 (i.e., Sugao Zairai, Sennari) had mixed results. Collectively, responses of soybean aphid populations in laboratory and field tests in 2008 resembled a virulence pattern reported previously for biotype 3 soybean aphids, but virulence in soybean aphid populations was variable and dynamic over years of the study. These results, coupled with previous reports of biotypes virulent to Rag1, suggest that deployment of lines with a single aphid-resistance gene is limited for soybean aphid management, and that deployment strategies relying on multiple resistance genes may be needed to effectively use plant resistance against soybean aphid.  相似文献   

20.
Summary The potato aphid, Macrosiphum euphorbiae Thomas, is an important pest of tomato, Lycopersicon esculentum Mill., because it transmits tomato viruses and directly reduces crop yields by its feeding. This study was conducted to determine whether the wild tomato species, Lycopersicon pennellii (Corr.) D'Arcy, would be useful as a source of potato aphid resistance for tomato. Type IV trichome density and aphid resistance were assessed in six generations (P1, P2, F1, F2, BC1P1, and BC1P2) from crosses between L. pennellii (LA 716) and two tomato cultivars, New Yorker and VF Vendor. Weighted leastsquares were used in joint scaling tests to estimate the relative importance of gene effects on type IV trichome density and potato aphid resistance of the hybrids. A simple additive-dominance model adequately explained the variation in type IV trichome density. Models which included digenic epistatic effects were required to explain the variation in aphid resistance. Standard unit heritability estimates of aphid resistance in the backcross to L. esculentum were obtained by regression of BC1F2 off-spring families on BC1F1 parents. Regression coefficients and heritability estimates varied between years with the level and uniformity of the aphid infestation. In the 1985–1986 growing seasons, when aphid infestations were uniform, aphid resistance exhibited a moderate level of heritability (29.8% ± 14.1% and 47.1% ± 11.5% in New Yorker and VF Vendor backcross populations, respectively). The non-uniform aphid infestation of 1984 resulted in lower heritability estimates in the 1984–1985 growing seasons (16.1% ± 15.7% and 21.9% ± 14.8% in the New Yorker and VF Vendor backcross populations, respectively). Selection for potato aphid resistance would probably be most efficient if it were delayed until gene combinations are fixed in later generations, because of the large epistatic effects and the low heritability of this trait in seasons with variable aphid infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号