首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishment failure by immigrant species, while believed to be a common occurrence, is difficult to observe and so factors contributing to failure are poorly explored. Human mediated disturbance is a key element in facilitating biological invasions, but its role in preventing establishment is rarely considered. In Australia, the whitefly, Bemisia tabaci biotype B was first detected in 1994 and has since spread widely and displaced an indigenous competitor. However, in one location it has failed to establish permitting an indigenous competitor to persist. In this area, the dominant plant host is Euphorbia cyathophora. Through a combination of laboratory and field experimentation we show that while both can utilise the young, upper leaves only the indigenous competitor can use the older lower leaves. We then demonstrate that the removal of the upper leaves as part of foreshore vegetation management is the key factor in preventing the establishment of the invader and subsequent displacement of its competitor. While human mediated disturbance coupled with complex biological interactions may promote invasion they may equally well retard rather than facilitate invasion, a factor that appears to have been largely ignored. Complexities of this kind must be conceived in our thinking to achieve a comprehensive understanding of biological invasion.  相似文献   

2.
The capacity of the B biotype of the whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), to invade has often been linked to its presumably wider host range than the non‐B indigenous biotypes. However, there are few experimental studies of the relative performance of the B biotype and non‐B biotypes on different host‐plant species. Here, we compared the performance of the B biotype and an indigenous non‐B biotype (China‐ZHJ‐1) of B. tabaci from Zhejiang, China on five commonly cultivated host plants, each from a different family: cotton, tobacco, cabbage, squash, and kidney bean. We also examined the effect of rearing host plants on the performance of the B biotype. Overall, the performance of the B biotype on the five species of plants was much better than that of the indigenous non‐B population. On tobacco, cabbage, and kidney bean, no individuals of ZHJ‐1 completed development to adulthood, whereas the B biotype developed successfully from egg to adult on all three plants. On squash, the B biotype survived better, developed to adulthood earlier and had a higher fecundity than ZHJ‐1. The two biotypes performed more equally on cotton, but even on this plant the B biotype female adults lived nearly twice as long as that of ZHJ‐1 and may have realized a higher life‐time fecundity. The B biotype also showed a substantial capacity to acclimatize to alternative host plants for improved survival and reproduction, on both highly suitable and marginally suitable host plants. We conclude that the host range of the B biotype of B. tabaci may be much wider than those of some indigenous biotypes, and this advantage of the B biotype over the non‐B biotypes may assist in its invasion and displacement of some indigenous biotypes in the field.  相似文献   

3.
Differential invasion success among biotypes: case of Bemisia tabaci   总被引:2,自引:0,他引:2  
Studies on success or failures of biological invasions by different insect biotypes are scarce and could provide interesting insights into the traits that determine greater or lower ability to invade. Life history traits of invasive whiteflies Bemisia tabaci of the B biotype (known as a worldwide invasive biotype) and of the indigenous biotype Ms (not known as an invader anywhere in the world), both from the island of La Réunion (Indian Ocean), were compared for this purpose. In our study we demonstrated that within a cultivated host plant (tomato), the B biotype differs from the Ms by a combination of several life-history traits. This combination gives the invasive biotype an advantage over the resident both in terms of rapid demographic growth (increased intrinsic rate of increase and associated traits such as short developmental times and high fecundity) and in terms of competition (large adult and offspring sizes), without any recorded trade off. However, in the field the resident biotype remains dominant on non-cultivated hosts (weeds) and in a particular climate (high humidity). This suggests that invasive biotypes are characterized by physiological, morphological and biological adaptations to a disturbed environment created by anthropic activities at different places in the world, while resident biotypes may persist in less altered habitats.  相似文献   

4.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a worldwide pest of numerous agricultural and ornamental crops. In addition to directly feeding on plants, it also acts as a vector of plant viruses of cultivated and uncultivated host plant species. Moreover, host plants can affect the population dynamics of whiteflies. An open‐choice screening experiment was conducted with B‐biotype B. tabaci on a diverse collection of crops, weeds, and other indigenous plant species. Five of the plant species were further evaluated in choice or no‐choice tests in the laboratory. The results reveal 49 new reproductive host plant species for B. tabaci. This includes 11 new genera of host plants (Arenaria, Avena, Carduus, Dichondra, Glechoma, Gnaphalium, Molugo, Panicum, Parthenocissus, Trianthema, and Triticum) for this whitefly. All species that served as hosts were acceptable for feeding, oviposition, and development to the adult stage by B. tabaci. The new hosts include three cultivated crops [oats (Avena sativa L.), proso millet (Panicum miliaceum L.), and winter wheat (Triticum aestivum L.)], weeds and other wild species, including 32 Ipomoea species, which are relatives of sweetpotato [I. batatas (L.) Lam.)]. Yellow nutsedge, Cyperus esculentus L., did not serve as a host for B. tabaci in either open‐choice or no‐choice tests. The results presented herein have implications for whitefly ecology and the numerous viruses that B. tabaci spreads to and among cultivated plants.  相似文献   

5.
Bemisia tabaciis a complex of closely related genetic types of whiteflies, few of which are invasive. One of these, B biotype, has proven to be particularly adapted to invading new areas, but the underlying reasons as to why it has a well-developed capacity to invade is not known. To develop an understanding of factors that may be contributing to B’s invasive capacity, inter-biotype mating interactions and host plant suitability for the exotic B (B. tabaci Mediterranean/Asia Minor/Africa) and the indigenous Australian (AN) biotype (B. tabaci Australia) were examined. The results suggest that when confined to a mutually acceptable host, B cannot establish when the ratio of AN : B exceeds 20 : 1. However, when simultaneously provided with a host that only it prefers, B is able to establish even at 50 : 1 (AN : B). Further, when both biotypes occur together the number of progeny per female increases (relative to the number produced when only one biotype is present). The response is observed for both biotypes, but is considerably greater in the case of B. In addition, B performs better in the presence of the AN biotype B. tabaci Australia while AN perform worse in coexistence with B, but only if the demographics allow B to mate without significant interference. This leads to the prediction that B will invade in circumstances where its unique hosts are of sufficient number to escape the full negative impact of inter-biotype mating interactions and reduced competitiveness in terms of reproductive rate, while exposing the indigenous biotype to the full effects of the interaction.  相似文献   

6.
Abstract To better understand the etiology of begomovirus epidemics in regions under invasion we need to know how indigenous and invasive whitefly vectors respond to virus infection. We investigated both direct and indirect effects of infection with Tomato yellow leaf curl virus (TYLCV) on the performance of the invasive Q biotype and the indigenous Asian ZHJ2 biotype of whitefly Bemisia tabaci. The Q biotype performed better than the ZHJ2 biotype on either uninfected or virus‐infected tomato plants. However, virus‐infection of host plants did not, or only marginally affected, the performance of either biotype of whiteflies in terms of fecundity, longevity, survival, development and population increase. Likewise, association of the vectors with TYLCV did not affect fecundity and longevity of the Q or ZHJ2 biotypes on cotton, a non‐host of TYLCV. These results indicate that the alien Q biotype whitefly, but not the indigenous ZHJ2 biotype, is likely to become the major vector of TYLCV in the field and facilitate virus epidemics.  相似文献   

7.
1. Two basic tenets of competition among parasitoids, that taxonomically distinct parasitoids are unable to discriminate against hosts that have previously been attacked by a competitor and that previous parasitism reduces the quality of a host, were tested by monitoring the oviposition response of Hyssopus pallidus, a gregarious ectoparasitoid, to healthy codling moth larvae and codling moth larvae that had previously been parasitised by a solitary endoparasitoid, Ascogaster quadridentata. 2. Hyssopus pallidus accepted both categories of host larva for oviposition when its competitor was constrained as a first‐instar larva by the diapause development of its host, but discriminated against previously parasitised host larvae when its competitor was present as a larger larva in a non‐diapausing host. 3. Hyssopus pallidus distinguished between the two categories of host larva by allocating twice as many eggs to host larvae previously parasitised by A. quadridentata, a response that was not influenced by previous oviposition experience. 4. The larger clutch sizes allocated to previously parasitised host larvae produced twice as many female progeny, each of a typical size, such that the total biomass was twice that produced from the smaller clutches laid on healthy host larvae. Possible confounding influences of host age and diapause are discounted. 5. These results demonstrate that interspecific discrimination does occur in H. pallidus and that host quality can be improved through previous parasitism by an endoparasitoid. Although interspecific discrimination appears rare among insect parasitoids, it may have been overlooked among ectoparasitoids and requires examination of the fitness consequences of interspecific interactions to clarify its adaptive significance.  相似文献   

8.
Worldwide, the most two important cryptic species of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) are MEAM1 (Middle East–Asia Minor 1, “B” biotype) and MED (Mediterranean, “Q” biotype). Although both B. tabaci MEAM1 and MED are polyphagous, they differ greatly in host choice and performance on various host plants. MEAM1 prefer to settle and perform better than MED on cabbage (Brassica oleracea), for example, but the underlying mechanism is largely unexplored. In the present study, we first measured the contents of the main secondary insect-resistant substances (glucosinolates and phenolics) and main nutrients (soluble proteins, total amino acids and total nitrogen) in five cabbage genotypes. We then examined the settling and oviposition choices of MEAM1 and MED on the five cabbage genotypes, respectively. The settling and oviposition preferences of both MEAM1 and MED were negatively related to the content of total phenolics rather than to the content of glucosinolates or main nutrients. Furthermore, our results showed that MEAM1 ranked the host quality of the cabbage genotypes more accurately than MED. The results at least in part indicate that total phenolics rather than glucosinolates mediate the host choice of B. tabaci MEAM1 and MED on the five cabbage genotypes.  相似文献   

9.
The sawfly, Diprion pini L., is a pest of Pinus in Europe and is mainly found on P. sylvestris L. and P. nigra laricio Poiret. The relative importance of female oviposition capacity and behaviour, egg development, and larval survival on a new host plant was measured on 11 pine species. Five were natural host plants and six non-host plants, five of which are not indigenous to Europe. Oviposition choice tests showed that females discriminated between the pine species. Egg and larval development also differed between pine species. However, the female choice was not linked with hatching rate and larval development. Results of biological tests clearly indicated that there were different response patterns of D. pini life stages in relation to pine species, and these patterns were the same with insects of four different origins. We discuss the importance of each potential barrier to colonisation of a new host.  相似文献   

10.
Native predators are postulated to have an important role in biotic resistance of communities to invasion and community resilience. Effects of predators can be complex, and mechanisms by which predators affect invasion success and impact are understood for only a few well-studied communities. We tested experimentally whether a native predator limits an invasive species’ success and impact on a native competitor for a community of aquatic insect larvae in water-filled containers. The native mosquito Aedes triseriatus alone had no significant effect on abundance of the invasive mosquito Aedes albopictus. The native predatory midge Corethrella appendiculata, at low or high density, significantly reduced A. albopictus abundance. This effect was not caused by trait-mediated oviposition avoidance of containers with predators, but instead was a density-mediated effect caused by predator-induced mortality. The presence of this predator significantly reduced survivorship of the native species, but high predator density also significantly increased development rate of the native species when the invader was present, consistent with predator-mediated release from interspecific competition with the invader. Thus, a native predator can indirectly benefit its native prey when a superior competitor invades. This shows the importance of native predators as a component of biodiversity for both biotic resistance to invasion and resilience of a community perturbed by successful invasion.  相似文献   

11.
The relationship between oviposition preference and larval performance is a central topic in insect–plant biology. In this study, we investigate whether the oligophagous flea beetle, Altica fragariae Nakane (Coleoptera: Chrysomelidae), exhibits a positive preference–performance relationship, and whether oviposition preference develops over time. We tested the beetles using four sympatric plant species: Duchesnea indica (Andrews) Focke (the normal host plant), Agrimonia pilosa Ledeb. (a secondary host plant), and Potentilla chinensis Ser. and Sanguisorba officinalis L. (host plants of two related Altica species) (all Rosaceae). In no‐choice experiments, both oviposition rate and offspring fitness parameters (eclosion rate, development time, and body mass) were highest on D. indica. Oviposition rate was much lower on P. chinensis than on A. pilosa, whereas offspring fitness parameters did not differ significantly between these two host plants. Offspring fitness were lowest for S. officinalis, and adult females refused to oviposit on this acceptable non‐host in a no‐choice situation. Repeated two‐choice experiments showed that the proportion of oviposition on one of the novel host plants decreased significantly over time when the alternative host plant was D. indica. In repeated two‐choice experiments using A. pilosa and P. chinensis, females mainly fed on A. pilosa but distributed their eggs equally over the two host plants, in accordance with the lack of difference in offspring fitness on those hosts. Together, these results showed that A. fragariae females develop a positive preference–performance relationship over time. We suggest that A. fragariae achieves this through adaptive learning of oviposition preference: not only does the female learn to discriminate among the host plants when there is a fitness difference for her offspring, but the female also fails to discriminate when there is no fitness difference.  相似文献   

12.
The capacity of the Middle East‐Asia Minor 1 putative species of the whitefly Bemisia tabaci (Gennadius) species complex, commonly referred to as the ‘B biotype’, to invade has often been linked to its presumed wider host range than the indigenous competitors. To determine whether this alien putative species and the indigenous Asia II 1 whitefly putative species, commonly referred to as the ‘ZHJ2 biotype’, differ in their ability to use different host plants, we compared their development, survival and reproduction on eight crop species/cultivars that are commonly cultivated in Zhejiang, China. Of the eight host plants tested, B performed substantially better than ZHJ2 on squash, tomato and tobacco, B and ZHJ2 preformed equally well on cotton and sweet potato, while ZHJ2 performed better than B on kidney bean and pepper. These results indicate that while B generally has a wider host range than many indigenous B. tabaci, an indigenous B. tabaci can perform as well as or better on some host plants. These results combined with the cropping patterns in Zhejiang suggested that the differential capacity to use various host plants between whitefly species is important in mediating the process of invasion by an alien whitefly species.  相似文献   

13.
Many herbivorous arthropods have been shown to possess learning capabilities, yet fitness effects of learning are largely unknown. In this paper, we test whether two-spotted spider mites (Tetranychus urticae) learn to distinguish food quality in choice tests, and whether this results in fitness benefits. Food consisted of cucumber plants with one of three degrees of feeding damage: undamaged (no mites), mildly damaged (infested by a mite strain adapted to tomato) and heavily damaged (infested by a mite strain adapted to cucumber). Mites were subjected to one choice test in a greenhouse and three sequential choice tests on leaf disks. Thereafter, individual mite performance was measured as oviposition rate over four days. In the course of the three small-scale choice tests, preference shifted towards less damaged food. The performance tests showed that learning was adaptive: mites learned to prefer the food type that yielded the higher oviposition rate. Interestingly, innate preferences in the greenhouse tests were close to those shown after learning in the small-scale tests. Given that both strains of mites had not experienced cucumber for several years, we hypothesize that the preference in the greenhouse was due to avoidance of mite odours rather than odours of damaged plants. Through its effect on foraging behaviour, adaptive learning may promote the evolution of host plant specialization in herbivorous arthropods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Herbivorous insects may be informed about the presence of competitors on the same host plant by a variety of cues. These cues can derive from either the competitor itself or the damaged plant. In the mustard leaf beetle Phaedon cochleariae (Coleoptera, Chrysomelidae), adults are known to be deterred from feeding and oviposition by the exocrine glandular secretion of conspecific co-occurring larvae. We hypothesised that the exocrine larval secretion released by feeding larvae may adsorb to the surface of Chinese cabbage leaves, and thus, convey the information about their former or actual presence. Further experiments tested the influence of leaves damaged by conspecific larvae, mechanically damaged leaves, larval frass and regurgitant on the oviposition and feeding behaviour of P. cochleariae. Finally, the effect of previous conspecific herbivory on larval development and larval host selection was assessed. Our results show that (epi)chrysomelidial, the major component of the exocrine secretion from P. cochleariae larvae, was detectable by GC-MS in surface extracts from leaves upon which larvae had fed. However, leaves exposed to volatiles of the larval secretion were not avoided by female P. cochleariae for feeding or oviposition. Thus, we conclude that secretion volatiles did not adsorb in sufficient amounts on the leaf surface to display deterrent activity towards adults. By contrast, gravid females avoided to feed and lay their eggs on leaves damaged by second-instar larvae for three days when compared to undamaged leaves. Mechanical damage of leaves and treatment of artificially damaged leaves with larval frass or regurgitant did not affect oviposition and feeding of P. cochleariae. Since no adverse effects of previous herbivory on larval development were detected, we suggest that female P. cochleariae avoid Chinese cabbage leaves damaged by feeding larvae for other reasons than escape from competition or avoidance of direct negative effects that result from consuming induced plant material.  相似文献   

15.
The behavioral strategies evolved by insect parasitoids to optimize their foraging efforts have been the subject of many theoretical and empirical studies. However, the effects competition may have on these strategies, especially for species that do not engage in antagonistic behaviors, have received little attention. The objective of this study was to evaluate the effects of intraspecific and interspecific competition on patch exploitation strategies by two non‐aggressive species, Trichogramma pintoi Voegelé and Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae), both generalist egg parasitoids. We analyzed the patch residence times of females, their patch‐leaving mechanisms, and the sex allocation of their progeny while foraging either alone, with an intraspecific competitor, or with an interspecific competitor. To some extent, each species responded differently to the presence of a competitor in the patch. Trichogramma pintoi females did not change their patch‐leaving mechanisms in response to competition and behaved as if under an exploitative competition regime, whereas T. minutum females did change their patch‐leaving mechanisms in response to competition and remained longer in the host patch than expected. Antennal rejection, and not oviposition, was the proximate behavioral mechanism underlying patch‐leaving decisions by both species. Neither species adjusted the sex allocation of their progeny in response to competition. These results indicate that the effects of competition differ even among closely related parasitoid species.  相似文献   

16.
The preference–performance hypothesis predicts that female insects maximize their fitness by utilizing host plants which are associated with high larval performance. Still, studies with several insect species have failed to find a positive correlation between oviposition preference and larval performance. In the present study, we experimentally investigated the relationship between oviposition preferences and larval performance in the butterfly Anthocharis cardamines. Preferences were assessed using both cage experiments and field data on the proportion of host plant individuals utilized in natural populations. Larval performance was experimentally investigated using larvae descending from 419 oviposition events by 21 females on plants from 51 populations of two ploidy types of the perennial herb Cardamine pratensis. Neither ploidy type nor population identity influenced egg survival or larval development, but increased plant inflorescence size resulted in a larger final larval size. There was no correlation between female oviposition preference and egg survival or larval development under controlled conditions. Moreover, variation in larval performance among populations under controlled conditions was not correlated with the proportion of host plants utilized in the field. Lastly, first instar larvae added to plants rejected for oviposition by butterfly females during the preference experiment performed equally well as larvae growing on plants chosen for oviposition. The lack of a correlation between larval performance and oviposition preference for A. cardamines under both experimental and natural settings suggests that female host choice does not maximize the fitness of the individual offspring.  相似文献   

17.
18.
1. In nature, competitive interactions occur when different species exploit similar niches. Parasitic wasps (parasitoids) often have narrow host ranges and need to cope with competitors that use the same host species for development of their offspring. When larvae of different parasitoid species develop in the same host, this leads to intrinsic and often contest competition. Thus far, most studies on intrinsic competition have focused on primary parasitoids. However, competition among primary hyperparasitoids, parasitic wasps that use primary parasitoids as a host, has been little studied. 2. This study investigated intrinsic competition between two primary hyperparasitoids, the gregarious Baryscapus galactopus and the solitary Mesochorus gemellus, which lay their eggs in primary parasitoid larvae of Cotesia rubecula, while those in turn are developing inside their herbivore host, Pieris rapae. The aims were to identify: (i) which hyperparasitoid is the superior competitor; and (ii) whether oviposition sequence affects the outcome of intrinsic competition. 3. The results show that B. galactopus won 70% of contests when the two hyperparasitoids parasitised the host at the same time, and 90% when B. galactopus oviposited first. When M. gemellus had a 48 h head start, the two hyperparasitoids had an equal chance to win the competition. This suggests that B. galactopus is an intrinsically superior competitor to M. gemellus. Moreover, the outcome of competition is affected by time lags in oviposition events. 4. In contrast to what has been reported for primary parasitoids, we found that a gregarious hyperparasitoid species had a competitive advantage over a solitary species.  相似文献   

19.
Flory SL  Mattingly WB 《Oecologia》2008,156(3):649-656
Insect oviposition on plants is widespread across many systems, but studies on the response of host plants to oviposition damage are lacking. Although patterns of oviposition vary spatially and temporally, ovipositing insects that exhibit outbreak characteristics may have strong effects on host plants during peak abundance. Periodical cicadas (Magicicada spp.), in particular, may reduce the performance of host plants when they synchronously emerge in massive numbers to mate and oviposit on host plants. Here we provide the first experimental manipulation of host plant use by periodical cicadas to evaluate the impact of cicada oviposition on plant performance across a diversity of host species within an ecologically relevant setting. Using a randomized block design, we established a plantation of three native and three exotic host plant species common to the successional forests in which cicadas occur. During the emergence of Brood X in 2004, we employed a highly effective cicada exclusion treatment by netting half of the host plants within each block. We assessed multiple measures of host plant performance, including overall plant growth and the growth and reproduction of individual branches, across three growing seasons. Despite our thorough assessment of potential host plant responses to oviposition damage, cicada oviposition did not generally inhibit host plant performance. Oviposition densities on unnetted host plants were comparable to levels documented in other studies, reinforcing the ecological relevance of our results, which indicate that cicada oviposition damage did not generally reduce the performance of native or exotic host plants.  相似文献   

20.
1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号