首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The ether-soluble resin glycoside ('jalapin') fraction obtained from scammony roots, on alkaline hydrolysis, gave a glycosidic acid, scammonic acid A, together with isobutyric, 2S-methylbutyric and tiglic acids. In addition, two kinds of resin glycosides, named scammonin I and II, were isolated and characterized, respectively, as (11S)-hydroxyhexadecanoic acid, 11-[( O-6-deoxy-4-O-(2(E)-methyl-1-oxo-2- butenyl)-beta-D-glucopyranosyl-(1----4)-O-6-deoxy-2-O-(2-methyl-1-oxobut yl)- alpha-L-mannopyranosyl-(1----2)-O-beta-D-glucopyranosyl-(1----2)-6-deoxy -beta- D-glucopyranosyl]oxy)-, intramol. 1,3"'-ester and (11S)-hydroxyhexadecanoic acid, 11-[( O-beta-D-glucopyranosyl-(1----4)-O-6-deoxy-2-O-(2-methyl-1-oxobutyl)- alpha-L-mannopyranosyl-(1----2)-O-beta-D-glucopyranosyl-(1----2)-6-deoxy -beta-D - glucopyranosyl]oxy)-, intramol. 1,3"'-ester.  相似文献   

2.
Metabolism of isonicotinic acid and isoniazid bySarcina sp. led to the formation of two metabolites which were characterised as 2-hydroxyisonicotinic acid and citrazinic acid. The blue pigment formed during fermentation was shown to be derived from the auto-oxidation of citrazinic acid. 2-Oxo-glutarate accumulated as the major keto acid when isonicotinic acid or isonicotinic acid hydrazide metabolism was inhibited by 1 mM sodium arsenite. Isonicotinic acid, 2-hydroxy-isonicotinic acid and 2-oxo-glutarate were oxidised by isonicotinic acid hydrazide or isonicotinic acid-grown cells; citrazinic acid was, however, not oxidised. Isoniazid hydrazine hydrolase, isonicotinic acid and 2-hydroxyisonicotinic acid hydroxylases were detected in the cell-free extract ofSarcina sp. grown on isonicotinic acid hydrazide or isonicotinic acid. Communication no. 2427from Central Drug Research Institute, Lucknow.  相似文献   

3.
Synovial fluid is a approximately 0.15% (w/v) aqueous solution of hyaluronic acid (HA), a polysaccharide consisting of alternating units of GlcA and GlcNAc. In synovial fluid of patients suffering from rheumatoid arthritis, HA is thought to be degraded either by radicals generated by Fenton chemistry (Fe2+/H2O2) or by NaOCl generated by myeloperoxidase. We investigated the course of model reactions of these two reactants in physiological buffer with HA, and with the corresponding monomers GlcA and GlcNAc. meso-Tartaric acid, arabinuronic acid, arabinaric acid and glucaric acid were identified by GC-MS as oxidation products of glucuronic acid. When GlcNAc was oxidised, erythronic acid, arabinonic acid, 2-acetamido-2-deoxy-gluconic acid, glyceric acid, erythrose and arabinose were formed. NaOCl oxidation of HA yielded meso-tartaric acid; in addition, arabinaric acid and glucaric acid were obtained by oxidation with Fe2+/H2O2. These results indicate that oxidative degradation of HA proceeds primarily at glucuronic acid residues. meso-Tartaric acid may be a useful biomarker of hyaluronate oxidation since it is produced by both NaOCl and Fenton chemistry.  相似文献   

4.
We have investigated the extent to which modifications in the essential fatty acid content of mammalian cells can affect prostaglandin production. Swiss mouse 3T3 cells stimulated with the calcium ionophore A23187 produced 1.7 to 7 times more prostaglandin E(2) (PGE(2)) when the cultures were supplemented with linoleic acid. Increases in PGE(2) production as a result of linoleic acid supplementation occurred under all culture conditions except during the first 24 hr after attachment, when prostaglandin production was very high. Arachidonic acid supplementation produced a similar enhancement in the capacity of the cells to produce PGE(2), but no appreciable increase occurred when the cultures were supplemented with oleic acid. The phospholipids of the cells exposed to the linoleate-enriched medium contained 4 times more arachidonic acid and twice as much linoleic acid as compared with the corresponding controls. The choline phosphoglycerides were most highly enriched in arachidonic acid, but 2- to 3-fold increases also occurred in the inositol and ethanolamine phosphoglycerides. When cultures initially enriched with linoleic acid were transferred to an unsupplemented medium, the fatty acid composition as well as the capacity of the cells to produce PGE(2) reverted almost to control values. The amount of exogenous arachidonic acid converted to PGE(2) as measured by radioimmunoassay also was greater when the cells were enriched with linoleic acid. Studies with radioactive arachidonic acid indicated that the distribution of prostaglandin metabolites was not affected appreciably by linoleic acid enrichment. These findings suggest that at least two factors contribute to the increased capacity of the cultures supplemented with linoleate to produce PGE(2). One is enrichment of the phospholipid substrate pools with arachidonic acid. The other is an increased ability of the cells to synthesize PGE(2) from unesterified arachidonic acid, perhaps because the prostaglandin-forming enzymes are more active.-Denning, G. M., P. H. Figard, and A. A. Spector. Effect of fatty acid modification on prostaglandin production by cultured 3T3 cells.  相似文献   

5.
6.
The importance of myristoylation for the proper biological functioning of many acylated proteins has generated interest in the enzymes of the myristoylation pathway and their interactions with substrates and inhibitors. Previous observations that S-(2-oxopentadecyl)-CoA, a nonhydrolyzable methylene-bridged analogue of myristoyl-CoA, was a potent inhibitor of myristoyl-CoA:protein N-myristoyltransferase (NMT) [Paige, L. A., Zheng, G.-q., DeFrees, S. A., Cassady, J. M., & Geahlen, R. L. (1989) J. Med. Chem. 32, 1665] prompted a closer examination of the effect of substituents at the 2-position on the interactions of myristic acid and myristoyl-CoA analogues with NMT. As an initial approach, three myristic acid derivatives bearing different substituents at the 2-position, 2-fluoromyristic acid, 2-bromomyristic acid, and 2-hydroxymyristic acid, were selected for study. Both 2-bromomyristic acid and 2-hydroxymyristic acid were available commercially; 2-fluoromyristic acid was prepared synthetically. All three compounds were found to be only weak inhibitors of NMT in vitro. Of the three, 2-bromomyristic acid was the most potent (Ki = 100 microM). In cultured cells, however, 2-hydroxymyristic acid was by far the more effective inhibitor of protein myristoylation. Neither 2-hydroxymyristic acid nor 2-bromomyristic acid significantly inhibited protein palmitoylation in cultured cells, indicating that inhibition was not occurring at the level of acyl-CoA synthetase. Activation of the 2-substituted myristic acid derivatives to their corresponding acyl-CoA thioesters by acyl-CoA synthetase resulted in inhibitors of greatly increased potency. The 2-substituted acyl-CoA analogues, 2-hydroxymyristoyl-CoA, 2-bromomyristoyl-CoA, and 2-fluoromyristoyl-CoA, were synthesized and shown to be competitive inhibitors of NMT in vitro (Ki's = 45, 450, and 200 nM, respectively). These data suggested that the enhanced inhibitory potency of 2-hydroxymyristic acid seen in cells was most probably a result of its metabolic activation to the CoA thioester. The presence of substituents at the 2-position also affected the ability of the acyl group to be transferred by NMT to a peptide substrate. Of the three acyl-CoA analogues, only 2-fluoromyristoyl-CoA served as a substrate for NMT.  相似文献   

7.
The addition of arachidonic acid induced a rapid release of 45Ca2+ from human platelet membrane vesicles which accumulated 45Ca2+ in the presence of ATP. Docosahexaenoic acid, eicosapentaenoic acid, linolenic acid and linoleic acid were less active than arachidonic acid. In contrast, oleic acid, myristic acid and palmitic acid were without effect. The thromboxane A2 analogue induced no 45Ca2+ release. The cyclooxygenase/lipoxygenase inhibitor failed to suppress arachidonic acid-induced 45Ca2+ release at the concentration which inhibited the production of lipid peroxides. These data indicate that the activity of arachidonic acid may be due to fatty acid itself and not to its metabolites. The combination of arachidonic acid and inositol 1,4,5-trisphosphate (IP3) resulted in a greater 45Ca2+ release from platelet membrane vesicles than either compound alone. When the intracellular free Ca2+ concentration ([Ca2+]i) was measured using fura-2, the thrombin-induced [Ca2+]i increase was reduced in platelets which had been treated with a phospholipase A2 inhibitor, ONO-RS-082 (2-(p-amylcinnamoyl)amino-4-chlorobenzoic acid). These results provide evidence that arachidonic acid alone may cause Ca2+ increase and also may induce an additional Ca2+ mobilization to IP3-induced Ca2+ release in human platelets.  相似文献   

8.
2-[(2H(9))Butoxy]acetic acid and 2-(3-methylbutoxy)acetic acid were synthesized, mixed with 2-butoxyacetic acid, and separated by capillary gas chromatography on a fused-silica column with a length of 50 m, inside diameter of 0.200 mm, and a "free fatty acid phase" wall coating of 0.3 microm film. 2-[(2H(9))Butoxy]acetic acid, 2-butoxyacetic acid, and 2-(3-methylbutoxy)acetic acid were baseline resolved at retention times of 13.55, 13.78, and 15.20 min; 2-(3-methylbutoxy)acetic acid having a peak efficiency of 360,000. Mass spectrometric detection using selected ion monitoring at m/z 66, 57, and 71 showed linear analytical responses from 0.04 ng to at least 200 ng with a limit of detection of 0.04 ng for 2-butoxyacetic acid.  相似文献   

9.
4-{[2-[(2-Furylsulfonyl)(isobutyl)amino]-5-(trifluoromethyl)phenoxy]methyl}benzoic acid analogs 2a and b and a series of the acid analogs, in which the carboxylic acid residue of 2b was replaced with various kinds of carboxylic acid bioisosteres, were synthesized and evaluated as EP1 receptor antagonists. Compound 2b and its monocyclic acid analogs, in which the carboxylic acid residue of 2b was replaced with monocyclic acid bioisosteres, were found to show potent EP1 receptor antagonist activity. Optimization of the linker Y between the phenyl moiety and the carboxylic acid residue of 2b was also carried out (Table 5). Compounds 2b and 16 and 17 possessing conformationally restricted linker Y were found to show the most optimized potency among the tested compounds. Cytochrome P450 inhibition of optimized compounds was also investigated. Details of the structure-activity relationship study are presented.  相似文献   

10.
Anaerobic degradation of 2-methylnaphthalene was investigated with a sulfate-reducing enrichment culture. Metabolite analyses revealed two groups of degradation products. The first group comprised two succinic acid adducts which were identified as naphthyl-2-methyl-succinic acid and naphthyl-2-methylene-succinic acid by comparison with chemically synthesized reference compounds. Naphthyl-2-methyl-succinic acid accumulated to 0.5 microM in culture supernatants. Production of naphthyl-2-methyl-succinic acid was analyzed in enzyme assays with dense cell suspensions. The conversion of 2-methylnaphthalene to naphthyl-2-methyl-succinic acid was detected at a specific activity of 0.020 +/- 0.003 nmol min(-1) mg of protein(-1) only in the presence of cells and fumarate. We conclude that under anaerobic conditions 2-methylnaphthalene is activated by fumarate addition to the methyl group, as is the case in anaerobic toluene degradation. The second group of metabolites comprised 2-naphthoic acid and reduced 2-naphthoic acid derivatives, including 5,6,7,8-tetrahydro-2-naphthoic acid, octahydro-2-naphthoic acid, and decahydro-2-naphthoic acid. These compounds were also identified in an earlier study as products of anaerobic naphthalene degradation with the same enrichment culture. A pathway for anaerobic degradation of 2-methylnaphthalene analogous to that for anaerobic toluene degradation is proposed.  相似文献   

11.
The human monocyte cell line U937 expresses phospholipase A2 and phospholipase C activities and produces eicosanoids. The phospholipase C (PLC) activity exhibits substrate preference for phosphatidyl-choline (PC), rather than phosphatidylinositol or phosphatidylethanolamine. In order to characterize the PLC activity found in these cells, the effects of substitution of the sn-2 fatty acid on this activity were examined. PC substrates with palmitic acid (PC-2P), oleic acid (PC-2O), arachidonic acid (PC-2A) and linoleic acid (PC-2L) at the sn-2 position were used. The sn-1 fatty acid was palmitic acid. PC-2L and PC-2A with the longer-chain less-saturated fatty acids linoleic acid and arachidonic acid esterified at sn-2 were found to be better substrates for PLC activity than PC-2P or PC-2O in these cells. This preference was maintained even when substrate phospholipid was solubilized in non-ionic, anionic, cationic and zwitterionic amphiphiles. Furthermore, when a 500-fold excess of 1,2-diolein or 1,2-dipalmitin was added to the reaction, the specificity of the PLC activity for PC-2A and PC-2L remained unchanged. When similar experiments were performed with phosphatidylinositol as a substrate, we did not observe any effect when the sn-2 position was altered. These data show that the fatty acid constituent at the sn-2 position affects the observed PLC activity when phosphatidylcholine, but not phosphatidylinositol, is used as a substrate by these cells.  相似文献   

12.
Ho CC  Tsai HY  Lai YS  Chung JG 《Cytobios》2001,104(406):107-117
Following exposure of rats to the arylamine carcinogen 2-aminofluorene, DNA-carcinogen adducts were found in the liver and bladder target tissues, and also in circulating leucocytes. This work investigated the effect of ellagic acid on arylamine (2-aminofluorene and p-aminobenzoic acid) acetylations in rat leucocytes. Evidence is presented that rat mononuclear leucocytes are capable of acetylating 2-aminofluorene and p-aminobenzoic acid. Both lymphocytes and monocytes were able to acetylate arylamines during 18 h of culture. Cultured lymphocytes produced about twice as much N-acetyl-2-aminofluorene from 2-aminofluorene and 2.2-fold as much N-acetyl-p-aminobenzoic acid from p-aminobenzoic acid as monocytes. After cotreatment with ellagic acid the lymphocyte and monocyte cultures indicated that ellagic acid reduced 2-aminofluorene acetylation.  相似文献   

13.
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture   总被引:5,自引:0,他引:5  
Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture was studied by substrate utilization tests and identification of metabolites by gas chromatography-mass spectrometry. In substrate utilization tests, the culture was able to oxidize naphthalene, 2-methylnaphthalene, 1- and 2-naphthoic acids, phenylacetic acid, benzoic acid, cyclohexanecarboxylic acid, and cyclohex-1-ene-carboxylic acid with sulfate as the electron acceptor. Neither hydroxylated 1- or 2-naphthoic acid derivatives and 1- or 2-naphthol nor the monoaromatic compounds ortho-phthalic acid, 2-carboxy-1-phenylacetic acid, and salicylic acid were utilized by the culture within 100 days. 2-Naphthoic acid accumulated in all naphthalene-grown cultures. Reduced 2-naphthoic acid derivatives could be identified by comparison of mass spectra and coelution with commercial reference compounds such as 1,2,3, 4-tetrahydro-2-naphthoic acid and chemically synthesized decahydro-2-naphthoic acid. 5,6,7,8-Tetrahydro-2-naphthoic acid and octahydro-2-naphthoic acid were tentatively identified by their mass spectra. The metabolites identified suggest a stepwise reduction of the aromatic ring system before ring cleavage. In degradation experiments with [1-(13)C]naphthalene or deuterated D(8)-naphthalene, all metabolites mentioned derived from the introduced labeled naphthalene. When a [(13)C]bicarbonate-buffered growth medium was used in conjunction with unlabeled naphthalene, (13)C incorporation into the carboxylic group of 2-naphthoic acid was shown, indicating that activation of naphthalene by carboxylation was the initial degradation step. No ring fission products were identified.  相似文献   

14.
High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.  相似文献   

15.
Abstract— The intraperitoneal administration of 1-aminocyclopentane carboxylic acid, 1-aminocyclohex-ane carboxylic acid, l-aminocycloheptane carboxylic acid, 1-aminocyclooctane carboxylic acid, exo-2-aminobicyclo(2,2. l)heptane-2-carboxylic acid. endo-2-aminobicyclo(2,2.1)heptane-2-carboxylic acid. 2-aminobicyclo(2.2.2)octane-2-carboxylic acid and 2-aminobicyclo(3,2.l)octane-2-carboxylic acid to 18-day-old male rats selectively perturbed the levels of neutral amino acids in the cerebral cortex. While the effect of the above compounds was rather diversified and usually resulted in a reduction of amino acid levels. marked elevations of the levels of valine and isoleucine were also noted. 1-Aminocycloheptane and cyclooctane carboxylic acids were particularly noteworthy, in that they elicited a marked reduction of the levels of cortical phenylalanine.  相似文献   

16.
1. 2-Naphthylhydroxylamine and 2-nitrosonaphthalene were present in urine of dogs but not of guinea pigs, hamsters, rabbits or rats dosed with 2-naphthylamine. N-Acetyl-2-naphthylhydroxylamine and its O-sulphonic acid and O-glucosiduronic acid were not detected in the urine of any of these species. 2. Bile from rats dosed with 2-naphthylamine contained (2-naphthylamine N-glucosid)uronic acid and 6- and 5,6-substituted derivatives of 2-acetamidonaphthalene. 2-Amino-1-naphthyl and 2-acetamido-1-naphthyl derivatives, 2-naphthylhydroxylamine and its N-acetyl derivative or conjugates of these were not detected. Bile from a dog dosed with 2-naphthylamine contained no 2-amino-1-naphthyl derivatives. 3. 2-Naphthylhydroxylamine was metabolized by the dog, rat and guinea pig to the same products as those formed by these species from 2-naphthylamine. Rabbits formed mainly 2-amino-1-naphthyl derivatives; these are minor metabolites of 2-naphthylamine in this species. 4. (N-Acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was excreted in the urine and the bile of rats and in the urine of guinea pigs and rabbits dosed with N-acetyl-2-naphthylhydroxylamine. 5. After the administration of 2-acetamidonaphthalene, (N-acetyl-2-naphthylhydroxylamine O-glucosid)uronic acid was detected in the urine of dogs, but not in the urine of other species. The dog excreted an acid-labile cysteine derivative of 2-acetamidonaphthalene, but only traces of the corresponding mercapturic acid. 6. After dosing with N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, rats excreted derivatives of 2-amino-1-naphthol. 7. 2-Nitrosonaphthalene, N-acetyl-2-naphthylhydroxylamine, N-acetyl-2-naphthylhydroxylamine-O-sulphonic acid, 2-naphthylhydroxylamine-N-sulphonic acid, N-benzyloxycarbonyl-2-naphthylhydroxylamine and N-benzyloxycarbonyl-2-naphthylhydroxylamine-O-sulphonic acid were synthesized.  相似文献   

17.
腐植酸肥料对生姜土壤微生物量和酶活性的影响   总被引:9,自引:0,他引:9  
设4个处理:空白对照、等量腐植酸、等量无机养分和腐植酸复合肥.通过小区试验,研究了腐植酸肥料在生姜不同生育时期对土壤微生物量和3种重要酶活性的影响.结果表明:与不施肥处理比较,施用腐植酸使前期的微生物量碳增加、脲酶活性降低,后期的微生物量碳减少、脲酶活性提高;施用腐植酸增加土壤活跃微生物量、提高酸性磷酸酶活性、降低蔗糖酶活性,全生育期平均土壤活跃微生物量和酸性磷酸酶活性分别提高17.34%和11.40%、蔗糖酶活性降低10.57%.与施用等量无机养分处理比较,施用腐植酸复合肥也使前期的微生物量碳增加、脲酶活性降低,后期的微生物量碳减少、脲酶活性提高;施用腐植酸复合肥增加土壤活跃微生物量、提高酸性磷酸酶和蔗糖酶活性,全生育期平均土壤活跃微生物量、酸性磷酸酶和蔗糖酶活性分别提高18.61%、10.07%和7.61%.  相似文献   

18.
1. (+)-n-Propylmercapturic acid sulphoxide, i.e. (+)-N-acetyl-S-n-propyl-l-cysteine S-oxide, was prepared as the dicyclohexylammonium salt, (-)-n-propyl-mercapturic acid sulphoxide was prepared as the free acid, and S-isopropyl-l-cysteine and isopropylmercapturic acid were also prepared. 2. The metabolism of 1- and 2-bromopropane was studied by radiochromatographic examination of the urine excreted by rats that had been fed with a diet containing (35)S-labelled yeast and then injected subcutaneously with these compounds. In addition to n-propyl-mercapturic acid and 2-hydroxypropylmercapturic acid, the excretion of which has already been reported, n-propylmercapturic acid sulphoxide was shown to be a metabolite of 1-bromopropane. Sulphur-containing metabolites of 2-bromopropane, if present in the urine at all, were there in very small amounts. 3. n-Propylmercapturic acid and isopropylmercapturic acid were isolated from the urine of rats that had been injected subcutaneously with S-n-propyl-l-cysteine and S-isopropyl-l-cysteine respectively.  相似文献   

19.
Submitochondrial particles of bovine heart were hydrolyzed by phospholipase A2 and the products were analyzed by liquid chromatography electrospray ionization-mass spectrometry. We found a fatty acid with a molecular mass of 268 Da and a retention time longer than that of linoleic acid. Next, we synthesized organically cis-9,10-methylenehexadecanoic acid, which has a molecular mass similar to that of the extracted fatty acid, and characterized its high performance liquid chromatography and gas chromatography-mass spectrometry profiles. Using these data we were able to identify endogenous cis-9,10-methylenehexadecanoic acid in rat and human heart and liver tissues that had been hydrolyzed by phospholipase A2. This fatty acid was not detected in tissue extracts that had not been hydrolyzed by phospholipase A2. Similar amounts of cis-9, 10-methylenehexadecanoic acid were measured in tissue extracts after total hydrolysis. These results suggest that cis-9, 10-methylenehexadecanoic acid is a fatty acid component, in the sn-2 position, of phospholipids in some mammalian tissue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号