首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The dynamic behavior of HIV-1 TAR and its complex with argininamide is investigated by means of molecular dynamics simulations starting from NMR structures, with explicit inclusion of water and periodic boundary conditions particle mesh Ewald representation of the electrostatic energy. During simulations of free and argininamide-bound TAR, local structural patterns, as determined by NMR experiments, were reproduced. An interdomain motion was observed in the simulations of free TAR, which is absent in the case of bound TAR, leading to the conclusion that the free conformation of TAR is intrinsically more flexible than the bound conformation. In particular, in the bound conformation the TAR–argininamide interface is very well ordered, as a result of the formation of a U·A·U base triple, which imposes structural constraints on the global conformation of the molecule. Free energy analysis, which includes solvation contributions, was used to evaluate the influence of van der Waals and electrostatic terms on formation of the complex and on the conformational rearrangement from free to bound TAR.  相似文献   

4.
We have performed molecular dynamics (MD) simulations, with particle-mesh Ewald, explicit waters, and counterions, and binding specificity analyses using combined molecular mechanics and continuum solvent (MM-PBSA) on the bovine immunodeficiency virus (BIV) Tat peptide-TAR RNA complex. The solution structure for the complex was solved independently by Patel and co-workers and Puglisi and co-workers. We investigated the differences in both structures and trajectories, particularly in the formation of the U-A-U base triple, the dynamic flexibility of the Tat peptide, and the interactions at the binding interface. We observed a decrease in RMSD in comparing the final average RNA structures and initial RNA structures of both trajectories, which suggests the convergence of the RNA structures to a MD equilibrated RNA structure. We also calculated the relative binding of different Tat peptide mutants to TAR RNA and found qualitative agreement with experimental studies.  相似文献   

5.
6.
7.
8.
Lu J  Kadakkuzha BM  Zhao L  Fan M  Qi X  Xia T 《Biochemistry》2011,50(22):5042-5057
RNA conformational dynamics and the resulting structural heterogeneity play an important role in RNA functions, e.g., recognition. Recognition of HIV-1 TAR RNA has been proposed to occur via a conformational capture mechanism. Here, using ultrafast time-resolved fluorescence spectroscopy, we have probed the complexity of the conformational landscape of HIV-1 TAR RNA and monitored the position-dependent changes in the landscape upon binding of a Tat protein-derived peptide and neomycin B. In the ligand-free state, the TAR RNA samples multiple families of conformations with various degrees of base stacking around the three-nucleotide bulge region. Some subpopulations partially resemble those ligand-bound states, but the coaxially stacked state is below the detection limit. When Tat or neomycin B binds, the bulge region as an ensemble undergoes a conformational transition in a position-dependent manner. Tat and neomycin B induce mutually exclusive changes in the TAR RNA underlying the mechanism of allosteric inhibition at an ensemble level with residue-specific details. Time-resolved anisotropy decay measurements revealed picosecond motions of bases in both ligand-free and ligand-bound states. Mutation of a base pair at the bulge--stem junction has differential effects on the conformational distributions of the bulge bases. A dynamic model of the ensemble view of the conformational landscape for HIV-1 TAR RNA is proposed, and the implication of the general mechanism of RNA recognition and its impact on RNA-based therapeutics are discussed.  相似文献   

9.
10.
Trans-activation by HIV-1 Tat via a heterologous RNA binding protein   总被引:57,自引:0,他引:57  
M J Selby  B M Peterlin 《Cell》1990,62(4):769-776
  相似文献   

11.
12.
We report a comparative study in which a single-molecule fluorescence resonance energy transfer approach was used to examine how the binding of two families of HIV-1 viral proteins to viral RNA hairpins locally changes the RNA secondary structures. The single-molecule fluorescence resonance energy transfer results indicate that the zinc finger protein (nucleocapsid) locally melts the TAR RNA and RRE-IIB RNA hairpins, whereas arginine-rich motif proteins (Tat and Rev) may strengthen the hairpin structures through specific binding interactions. Competition experiments show that Tat and Rev can effectively inhibit the nucleocapsid-chaperoned annealing of complementary DNA oligonucleotides to the TAR and RRE-IIB RNA hairpins, respectively. The competition binding data presented here suggest that the specific nucleic acid binding interactions of Tat and Rev can effectively compete with the general nucleic acid binding/chaperone functions of the nucleocapsid protein, and thus may in principle help regulate critical events during the HIV life cycle.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Abstract

The trans-activator protein (Tat) of human immunodeficiency virus type 1 (HIV-1>) binds to an uridine-rich bulge of an RNA target (TAR; trans-activation responsive element) predominantly via its basic sequence domain. The structure of the Tat(46–58)-TAR complex has been determined by a novel modeling approach relying on structural information about one crucial arginine residue and crosslink data. The strategy described here solely uses this experimental data without additional “modeling” assumptions about the structure of the complex in order to avoid human bias. Model building was performed in a fashion similar to structure calculations from nuclear magnetic resonance (NMR)-spectroscopic data using restrained molecular dynamics.

The resulting set of structures of Tat(46–58) in its complex with TAR reveals that all models have converged to a common fold, showing a backbone root mean square deviation (RMSD) of 1.36Å. Analysis of the calculated structures suggests that HIV-1 Tat forms a hairpin loop in its complex with TAR that shares striking similarity to the hairpin formed by the structure of the bovine immunodeficiency virus Tat protein after TAR binding as determined by NMR studies. The outlined approach is not limited to the Tat-TAR complex modeling, but is also applicable to all molecular complexes with sufficient biochemical and biophysical data available.  相似文献   

20.
The trans-activator protein (Tat) of human immunodeficiency virus type 1 (HIV-1) binds to an uridine-rich bulge of an RNA target (TAR; trans-activation responsive element) predominantly via its basic sequence domain. The structure of the Tat(46-58)-TAR complex has been determined by a novel modeling approach relying on structural information about one crucial arginine residue and crosslink data. The strategy described here solely uses this experimental data without additional "modeling" assumptions about the structure of the complex in order to avoid human bias. Model building was performed in a fashion similar to structure calculations from nuclear magnetic resonance (NMR)-spectroscopic data using restrained molecular dynamics. The resulting set of structures of Tat(46-58) in its complex with TAR reveals that all models have converged to a common fold, showing a backbone root mean square deviation (RMSD) of 1.36A. Analysis of the calculated structures suggests that HIV-I Tat forms a hairpin loop in its complex with TAR that shares striking similarity to the hairpin formed by the structure of the bovine immunodeficiency virus Tat protein after TAR binding as determined by NMR studies. The outlined approach is not limited to the Tat-TAR complex modeling, but is also applicable to all molecular complexes with sufficient biochemical and biophysical data available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号