首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behr J  Michel H  Mäntele W  Hellwig P 《Biochemistry》2000,39(6):1356-1363
By specific (13)C labeling of the heme propionates, four bands in the reduced-minus-oxidized FTIR difference spectrum of cytochrome c oxidase from Paracoccus denitrificans have been assigned to the heme propionates [Behr, J., Hellwig, P., M?ntele, W., and Michel, H. (1998) Biochemistry 37, 7400-7406]. To attribute these signals to the individual propionates, we have constructed seven cytochrome coxidase variants using site-directed mutagenesis of subunit I. The mutant enzymes W87Y, W87F, W164F, H403A, Y406F, R473K, and R474K were characterized by measurement of enzymatic turnover, proton pumping activity, and Vis and FTIR spectroscopy. Whereas the mutant enzymes W164F and Y406F were found to be structurally altered, the other cytochrome c oxidase variants were suitable for band assignment in the infrared. Reduced-minus-oxidized FTIR difference spectra of the mutant enzymes were used to identify the ring D propionate of heme a as a likely proton acceptor upon reduction of cytochromic oxidase. The ring D propionate of heme a(3) might undergo conformational changes or, less likely, act as a proton donor.  相似文献   

2.
The mitochondrial bc(1) complex catalyzes the oxidation of ubiquinol and the reduction of cytochrome (cyt) c. The cyt b mutation A144F has been introduced in yeast by the biolistic method. This residue is located in the cyt b cd(1) amphipathic helix in the quinol-oxidizing (Q(O)) site. The resulting mutant was respiration-deficient and was affected in the quinol binding and electron transfer rates at the Q(O) site. An intragenic suppressor mutation was selected (A144F+F179L) that partially alleviated the defect of quinol oxidation of the original mutant A144F. The suppressor mutation F179L, located at less than 4 A from A144F, is likely to compensate directly the steric hindrance caused by phenylalanine at position 144. A second set of suppressor mutations was obtained, which also partially restored the quinol oxidation activity of the bc(1) complex. They were located about 20 A from A144F in the hinge region of the iron-sulfur protein (ISP) between residues 85 and 92. This flexible region is crucial for the movement of the ISP between cyt b and cyt c(1) during enzyme turnover. Our results suggested that the compensatory effect of the mutations in ISP was due to the repositioning of this subunit on cyt b during quinol oxidation. This genetic and biochemical study thus revealed the close interaction between the cyt b cd(1) helix in the quinol-oxidizing Q(O) site and the ISP via the flexible hinge region and that fine-tuning of the Q(O) site catalysis can be achieved by subtle changes in the linker domain of the ISP.  相似文献   

3.
The cytochrome aa(3)-type quinol oxidase from the archaeon Acidianus ambivalens and the ba(3)-type cytochrome c oxidase from Thermus thermophilus are divergent members of the heme-copper oxidase superfamily of enzymes. In particular they lack most of the key residues involved in the proposed proton transfer pathways. The pumping capability of the A. ambivalens enzyme was investigated and found to occur with the same efficiency as the canonical enzymes. This is the first demonstration of pumping of 1 H(+)/electron in a heme-copper oxidase that lacks most residues of the K- and D-channels. Also, the structure of the ba(3) oxidase from T. thermophilus was simulated by mutating Phe274 to threonine and Glu278 to isoleucine in the D-pathway of the Paracoccus denitrificans cytochrome c oxidase. This modification resulted in full efficiency of proton translocation albeit with a substantially lowered turnover. Together, these findings show that multiple structural solutions for efficient proton conduction arose during evolution of the respiratory oxidases, and that very few residues remain invariant among these enzymes to function in a common proton-pumping mechanism.  相似文献   

4.
Interacting residues in an activated state of a G protein-coupled receptor   总被引:1,自引:0,他引:1  
Ste2p, the G protein-coupled receptor (GPCR) for the tridecapeptide pheromone alpha-factor of Saccharomyces cerevisiae, was used as a model GPCR to investigate the role of specific residues in the resting and activated states of the receptor. Using a series of biological and biochemical analyses of wild-type and site-directed mutant receptors, we identified Asn(205) as a potential interacting partner with the Tyr(266) residue. An N205H/Y266H double mutant showed pH-dependent functional activity, whereas the N205H receptor was non-functional and the Y266H receptor was partially active indicating that the histidine 205 and 266 residues interact in an activated state of the receptor. The introduction of N205K or Y266D mutations into the P258L/S259L constitutively active receptor suppressed the constitutive activity; in contrast, the N205K/Y266D/P258L/S259L quadruple mutant was fully constitutively active, again indicating an interaction between residues at the 205 and 206 positions in the receptor-active state. To further test this interaction, we introduced the N205C/Y266C, F204C/Y266C, and N205C/A265C double mutations into wild-type and P258L/S259L constitutively active receptors. After trypsin digestion, we found that a disulfide-cross-linked product, with the molecular weight expected for a receptor fragment with a cross-link between N205C and Y266C, formed only in the N205C/Y266C constitutively activated receptor. This study represents the first experimental demonstration of an interaction between specific residues in an active state, but not the resting state, of Ste2p. The information gained from this study should contribute to an understanding of the conformational differences between resting and active states in GPCRs.  相似文献   

5.
The cytochrome d complex from Escherichia coli has been reconstituted in proteoliposomes. Previous studies have shown that the enzyme rapidly oxidizes ubiquinol-8 within the bilayer as well as the soluble homologue, ubiquinol-1, and that quinol oxidase activity is accompanied by the formation of a transmembrane potential across the vesicle bilayer. In this work, the proton pumping activity of the cytochrome in the reconstituted vesicles is examined. Ubiquinol-1 oxidase activity is shown to be accompanied by the net alkalinization of the interior space of the reconstituted vesicles and by the release of protons in the external volume. H+/O ratios varying from 0.6 to 1.2 were measured in different preparations, by the oxygen pulse technique. Antibodies which bind specifically to subunit I (cytochrome b558) of the 2-subunit oxidase were used to estimate the topology of the reconstituted oxidase in the vesicles. It was concluded that 70-85% of the molecules were oriented with subunit I facing the outside and that this population of molecules is responsible for the observed proton release. Correction for the fraction of the oxidase which pumps protons into the vesicle interior yields an estimate of H+/O = 1.7 +/- 0.2. It is proposed that the enzyme does not function as an actual proton pump, but that the enzyme oxidizes ubiquinol and reduces oxygen (to water) on opposite faces of the membrane. Hence, scalar chemistry would yield H+/O = 2 and an electrogenic reaction by virtue of the transmembrane electron transfer between the proposed active sites.  相似文献   

6.
Sellers VM  Wu CK  Dailey TA  Dailey HA 《Biochemistry》2001,40(33):9821-9827
The terminal step in heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to form protoheme, is catalyzed by the enzyme ferrochelatase (EC 4.99.1.1). A number of highly conserved residues identified from the crystal structure of human ferrochelatase as being in the active site were examined by site-directed mutagenesis. The mutants Y123F, Y165F, Y191H, and R164L each had an increased K(m) for iron without an altered K(m) for porphyrin. The double mutant R164L/Y165F had a 6-fold increased K(m) for iron and a 10-fold decreased V(max). The double mutant Y123F/Y191F had low activity with an elevated K(m) for iron, and Y123F/Y165F had no measurable activity. The mutants H263A/C/N, D340N, E343Q, E343H, and E343K had no measurable enzyme activity, while E343D, E347Q, and H341C had decreased V(max)s without significant alteration of the K(m)s for either substrate. D340E had near-normal kinetic parameters, while D383A and H231A had increased K(m)s for iron. On the basis of these data and the crystal structure of human ferrochelatase, it is proposed that residues E343, H341, and D340 form a conduit from H263 in the active site to the protein exterior and function in proton extraction from the porphyrin macrocycle. The role of H263 as the porphyrin proton-accepting residue is central to catalysis since metalation only occurs in conjunction with proton abstraction. It is suggested that iron is transported from the exterior of the enzyme at D383/H231 via residues W227 and Y191 to the site of metalation at residues R164 and Y165 which are on the opposite side of the active site pocket from H263. This model should be general for mitochondrial membrane-associated eucaryotic ferrochelatases but may differ for bacterial ferrochelatases since the spatial orientation of the enzyme within prokaryotic cells may differ.  相似文献   

7.
Cytochrome bd is a quinol oxidase from Escherichia coli, which is optimally expressed under microaerophilic growth conditions. The enzyme catalyzes the two-electron oxidation of either ubiquinol or menaquinol in the membrane and scavenges O2 at low concentrations, reducing it to water. Previous work has shown that, although cytochrome bd does not pump protons, turnover is coupled to the generation of a proton motive force. The generation of a proton electrochemical gradient results from the release of protons from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O from the cytoplasm. Because the active site has been shown to be located near the periplasmic side of the membrane, a proton channel must facilitate the delivery of protons from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, E107 and E99, are located in transmembrane helix III in subunit I and have been proposed to form part of this putative proton channel. In the current work, it is shown that mutations in either of these residues results in the loss of quinol oxidase activity and can result in the loss of the two hemes at the active site, hemes d and b595. One mutant, E107Q, while being totally inactive, retains the hemes. Fourier transform infrared (FTIR) redox difference spectroscopy has identified absorption bands from the COOH group of E107. The data show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the heme d/heme b595 binuclear center at the active site. In contrast, mutation of an acidic residue known to be at or near the quinol-binding site (E257A) also inactivates the enzyme but has no substantial influence on the FTIR redox difference spectrum. Mutagenesis shows that there are several acidic residues, including E99 and E107 as well as D29 (in CydB), which are important for the assembly or stability of the heme d/heme b595 active site.  相似文献   

8.
PQQ is an exogenous, tricyclic, quino-cofactor for a number of bacterial dehydrogenases. The final step of PQQ formation is catalyzed by PqqC, a cofactorless oxidase. This study focuses on the activation of molecular oxygen in an enzyme active site without metal or cofactor and has identified a specific oxygen binding and activating pocket in PqqC. The active site variants H154N, Y175F,S, and R179S were studied with the goal of defining the site of O(2) binding and activation. Using apo-glucose dehydrogenase to assay for PQQ production, none of the mutants in this "O(2) core" are capable of PQQ/PQQH(2) formation. Spectrophotometric assays give insight into the incomplete reactions being catalyzed by these mutants. Active site variants Y175F, H154N, and R179S form a quinoid intermediate (Figure 1) anaerobically. Y175S is capable of proceeding further from quinoid to quinol, whereas Y175F, H154N, and R179S require O(2) to produce the quinol species. None of the mutations precludes substrate/product binding or oxygen binding. Assays for the oxidation of PQQH(2) to PQQ show that these O(2) core mutants are incapable of catalyzing a rate increase over the reaction in buffer, whereas H154N can catalyze the oxidation of PQQH(2) to PQQ in the presence of H(2)O(2) as an electron acceptor. Taken together, these data indicate that none of the targeted mutants can react fully to form quinone even in the presence of bound O(2). The data indicate a successful separation of oxidative chemistry from O(2) binding. The residues H154, Y175, and R179 are proposed to form a core O(2) binding structure that is essential for efficient O(2) activation.  相似文献   

9.
The heme-copper oxidases convert the free energy liberated in the reduction of O(2) to water into a transmembrane proton electrochemical potential (protonmotive force). One of the essential structural elements of the enzyme is the D-channel, which is thought to be the input pathway, both for protons which go to form H(2)O ("chemical protons") and for protons that get translocated across the lipid membrane ("pumped protons"). The D-channel contains a chain of water molecules extending about 25 A from an aspartic acid (D132 in the Rhodobacter sphaeroides oxidase) near the cytoplasmic ("inside") enzyme surface to a glutamic acid (E286) in the protein interior. Mutations in which either of these acidic residues is replaced by their corresponding amides (D132N or E286Q) result in severe inhibition of enzyme activity. In the current work, an asparagine located in the D-channel has been replaced by the corresponding acid (N139 to D; N98 in bovine enzyme) with dramatic consequences. The N139D mutation not only completely eliminates proton pumping but, at the same time, confers a substantial increase (150-300%) in the steady-state cytochrome oxidase activity. The N139D mutant of the R. sphaeroides oxidase was further characterized by examining the rates of individual steps in the catalytic cycle. Under anaerobic conditions, the rate of reduction of heme a(3) in the fully oxidized enzyme, prior to the reaction with O(2), is identical to that of the wild-type oxidase and is not accelerated. However, the rate of reaction of the fully reduced enzyme with O(2) is accelerated by the N139D mutation, as shown by a more rapid F --> O transition. Whereas the rates of formation and decay of the oxygenated intermediates are altered, the nature of the oxygenated intermediates is not perturbed by the N139D mutation.  相似文献   

10.
Aagaard A  Brzezinski P 《FEBS letters》2001,494(3):157-160
Cytochrome c oxidase is a membrane-bound enzyme that catalyses the reduction of O2 to H2O and uses part of the energy released in this reaction to pump protons across the membrane. We have investigated the effect of addition of Zn2+ on the kinetics of two reaction steps in cytochrome c oxidase that are associated with proton pumping; the peroxy to oxo-ferryl (P(r)-->F) and the oxo-ferryl to oxidised (F-->O) transitions. The Zn2+ binding resulted in a decrease of the F-->O rate from 820 s(-1) (no Zn2+) to a saturating value of approximately 360 s(-1) with an apparent K(D) of approximately 2.6 microM. The P(r)-->F rate (approximately 10[(4) s(-1)] before addition of Zn2+) decreased more slowly with increasing Zn2+ concentration and a K(D) of approximately 120 microM was observed. The effects on both kinetic phases were fully reversible upon addition of EDTA. Since both the P(r)-->F and F-->O transitions are associated with proton uptake through the D-pathway, a Zn2+-binding site is likely to be located at the entry point of this pathway, where several carboxylates and histidine residues are found that may co-ordinate Zn2+.  相似文献   

11.
Vacuolar proton pumping pyrophosphatase (H(+)-PPase; EC 3.6.1.1) plays a pivotal role in electrogenic translocation of protons from cytosol to the vacuolar lumen at the expense of PP(i) hydrolysis. Alignment analysis on amino acid sequence demonstrates that vacuolar H(+)-PPase of mung bean contains six highly conserved histidine residues. Previous evidence indicated possible involvement of histidine residue(s) in enzymatic activity and H(+)-translocation of vacuolar H(+)-PPase as determined by using histidine specific modifier, diethylpyrocarbonate [J. Protein Chem. 21 (2002) 51]. In this study, we further attempted to identify the roles of histidine residues in mung bean vacuolar H(+)-PPase by site-directed mutagenesis. A line of mutants with histidine residues singly replaced by alanine was constructed, over-expressed in Saccharomyces cerevisiae, and then used to determine their enzymatic activities and proton translocations. Among the mutants scrutinized, only the mutation of H716 significantly decreased the enzymatic activity, the proton transport, and the coupling ratio of vacuolar H(+)-PPase. The enzymatic activity of H716A is relatively resistant to inhibition by diethylpyrocarbonate as compared to wild-type and other mutants, indicating that H716 is probably the target residue for the attack by this modifier. The mutation at H716 of V-PPase shifted the optimum pH value but not the T(1/2) (pretreatment temperature at which half enzymatic activity is observed) for PP(i) hydrolytic activity. Mutation of histidine residues obviously induced conformational changes of vacuolar H(+)-PPase as determined by immunoblotting analysis after limited trypsin digestion. Furthermore, mutation of these histidine residues modified the inhibitory effects of F(-) and Na(+), but not that of Ca(2+). Single substitution of H704, H716 and H758 by alanine partially released the effect of K(+) stimulation, indicating possible location of K(+) binding in the vicinity of domains surrounding these residues.  相似文献   

12.
We have cloned and overexpressed a truncated, recombinant form of beta-carbonic anhydrase from Arabidopsis thaliana. The wild-type enzyme and two site-directed variants, H216N and Y212F, have been kinetically characterized both at steady state by stopped-flow spectrophotometry and at chemical equilibrium by (18)O isotope exchange methods. The wild-type enzyme has a maximal k(cat) for CO2 hydration of 320 ms(-1) and is rate limited by proton transfer involving two residues with apparent pK(a) values of 6.0 and 8.7. The mutant enzyme H216N has a maximal k(cat) at high pH that is 43% that of wild type, but is only 5% that of wild type at pH 7.0. (18)O exchange studies reveal that the effect of the mutations H216N or Y212F is primarily on proton transfer steps in the catalytic mechanism and not in the rate of CO2-HCO3- exchange. These results suggest that residues His-216 and Tyr-212 are both important for efficient proton transfer in A. thaliana carbonic anhydrase.  相似文献   

13.
Site-directed mutagenesis of active site residues of deacetoxycephalosporin C synthase active site residues was carried out to investigate their role in catalysis. The following mutations were made and their effects on the conversion of 2-oxoglutarate and the oxidation of penicillin N or G were assessed: M180F, G299N, G300N, Y302S, Y302F/G300A, Y302E, Y302H, and N304A. The Y302S, Y302E, and Y302H mutations reduced 2-oxoglutarate conversions and abolished (<2%) penicillin G oxidation. The Y302F/G300A mutation caused partial uncoupling of penicillin G oxidation from 2-oxoglutarate conversion, but did not uncouple penicillin N oxidation from 2-oxoglutarate conversion. Met-180 is involved in binding 2-oxoglutarate, and the M180F mutation caused uncoupling of 2-oxoglutarate from penicillin oxidation. The N304A mutation apparently enhanced in vitro conversion of penicillin N but had little effect on the oxidation of penicillin G, under standard assay conditions.  相似文献   

14.
Lepp H  Svahn E  Faxén K  Brzezinski P 《Biochemistry》2008,47(17):4929-4935
Cytochrome c oxidase couples electron transfer from cytochrome c to O 2 to proton pumping across the membrane. In the initial part of the reaction of the reduced cytochrome c oxidase with O 2, an electron is transferred from heme a to the catalytic site, parallel to the membrane surface. Even though this electron transfer is not linked to proton uptake from solution, recently Belevich et al. [(2006) Nature 440, 829] showed that it is linked to transfer of charge perpendicular to the membrane surface (electrogenic reaction). This electrogenic reaction was attributed to internal transfer of a proton from Glu286, in the D proton pathway, to an unidentified protonatable site "above" the heme groups. The proton transfer was proposed to initiate the sequence of events leading to proton pumping. In this study, we have investigated electrogenic reactions in structural variants of cytochrome c oxidase in which residues in the second, K proton pathway of cytochrome c oxidase were modified. The results indicate that the electrogenic reaction linked to electron transfer to the catalytic site originates from charge transfer within the K pathway, which presumably facilitates reduction of the site.  相似文献   

15.
H(+)-F(O)F(1)-ATP synthase couples proton flow through its membrane portion, F(O), to the synthesis of ATP in its headpiece, F(1). Upon reversal of the reaction the enzyme functions as a proton pumping ATPase. Even in the simplest bacterial enzyme the ATPase activity is regulated by several mechanisms, involving inhibition by MgADP, conformational transitions of the epsilon subunit, and activation by protonmotive force. Here we report that the Met23Lys mutation in the gamma subunit of the Rhodobacter capsulatus ATP synthase significantly impaired the activation of ATP hydrolysis by protonmotive force. The impairment in the mutant was due to faster enzyme deactivation that was particularly evident at low ATP/ADP ratio. We suggest that the electrostatic interaction of the introduced gammaLys23 with the DELSEED region of subunit beta stabilized the ADP-inhibited state of the enzyme by hindering the rotation of subunit gamma rotation which is necessary for the activation.  相似文献   

16.
Witting PK  Mauk AG  Lay PA 《Biochemistry》2002,41(38):11495-11503
Myoglobin (Mb) catalyzes a range of oxidation reactions in the presence of hydrogen peroxide (H(2)O(2)) through a peroxidase-like cycle. C110A and Y103F variants of human Mb have been constructed to assess the effects of removing electron-rich oxidizable amino acids from the protein on the peroxidase activity of Mb: a point mutation at W14 failed to yield a viable protein. Point mutations at C110 and Y103 did not result in significant changes to structural elements of the heme pocket, as judged by low-temperature electron paramagnetic spectroscopy (EPR) studies on the ground-state ferric proteins. However, compared to the native protein, the yield of globin radical (globin*) was significantly decreased for the Y103F but not the C110A variant Mb upon reaction of the respective proteins with H(2)O(2). In contrast with our expectation that inhibiting pathways of intramolecular electron transfer may lead to enhanced Mb peroxidase activity, mutation of Y103 marginally decreased the rate constant for reaction of Mb with H(2)O(2) (1.4-fold) as judged by stopped-flow kinetic analyses. Consistent with this decrease in rate constant, steady-state analyses of Y103F Mb-derived thioanisole sulfoxidation indicated decreased V(max) and increased K(m) relative to the wild-type control. Additionally, thioanisole sulfoxidation proceeded with lower stereoselectivity, suggesting that Y103 plays a significant role in substrate binding and orientation in the heme pocket of Mb. Together, these results show that electron transfer within the globin portion of the protein is an important modulator of its stability and catalytic activity. Furthermore, the hydrogen-bonding network involving the residues that line the heme pocket of Mb is crucial to both efficient peroxidase activity and stereospecificity.  相似文献   

17.
利用体外定点突变技术获得Syp Y279F、Y304F和Y546F突变的cDNA, 将这些突变体和野生型Syp 分别构建入pXM 真核表达载体, 转入K562 细胞。经Western 印迹证明, 各转染K562 细胞中都有Syp 蛋白的表达。免疫沉淀与免疫印迹结果发现WT、Y279F、Y304F和Y546F等4 种Syp 在胞内均能直接与BcrAbl 结合。体外结合实验结果表明Y304F突变导致了Syp 不能与Shc 结合,Y279F突变则导致了Syp 不能与Grb2 结合。结论是: 作为“接头蛋白”,Syp 可以介导BcrAbl 与Shc 和Grb2 之间的结合;Grb2 结合在Syp 的Y279 上,Shc 则结合在Syp的Y304 上  相似文献   

18.
Aryl-alcohol oxidase provides H(2)O(2) for lignin biodegradation, a key process for carbon recycling in land ecosystems that is also of great biotechnological interest. However, little is known of the structural determinants of the catalytic activity of this fungal flavoenzyme, which oxidizes a variety of polyunsaturated alcohols. Different alcohol substrates were docked on the aryl-alcohol oxidase molecular structure, and six amino acid residues surrounding the putative substrate-binding site were chosen for site-directed mutagenesis modification. Several Pleurotus eryngii aryl-alcohol oxidase variants were purified to homogeneity after heterologous expression in Emericella nidulans, and characterized in terms of their steady-state kinetic properties. Two histidine residues (His502 and His546) are strictly required for aryl-alcohol oxidase catalysis, as shown by the lack of activity of different variants. This fact, together with their location near the isoalloxazine ring of FAD, suggested a contribution to catalysis by alcohol activation, enabling its oxidation by flavin-adenine dinucleotide (FAD). The presence of two aromatic residues (at positions 92 and 501) is also required, as shown by the conserved activity of the Y92F and F501Y enzyme variants and the strongly impaired activity of Y92A and F501A. By contrast, a third aromatic residue (Tyr78) does not seem to be involved in catalysis. The kinetic and spectral properties of the Phe501 variants suggested that this residue could affect the FAD environment, modulating the catalytic rate of the enzyme. Finally, L315 affects the enzyme k(cat), although it is not located in the near vicinity of the cofactor. The present study provides the first evidence for the role of aryl-alcohol oxidase active site residues.  相似文献   

19.
In this paper allosteric interactions in protonmotive heme aa(3) terminal oxidases of the respiratory chain are dealt with. The different lines of evidence supporting the key role of H(+)/e(-) coupling (redox Bohr effect) at the low spin heme a in the proton pump of the bovine oxidase are summarized. Results are presented showing that the I-R54M mutation in P. denitrificans aa(3) oxidase, which decreases by more than 200mV the E(m) of heme a, inhibits proton pumping. Mutational amino acid replacement in proton channels, at the negative (N) side of membrane-inserted prokaryotic aa(3) oxidases, as well as Zn(2+) binding at this site in the bovine oxidase, uncouples proton pumping. This effect appears to result from alteration of the structural/functional device, closer to the positive, opposite (P) surface, which separates pumped protons from those consumed in the reduction of O(2) to 2 H(2)O.  相似文献   

20.
To study the functional significance of the unusual bimetallic Cu(A) center of cytochrome c oxidase, the direct ligands of the Cu(A) center in subunit II of the holoenzyme were mutated. Two of the mutant forms, M263L and H260N, exhibit major changes in activity (10% and 1% of wild-type, respectively) and in near-infrared and EPR spectra, but metal analysis shows that both mutants retain two coppers in the Cu(A) center and both retain proton pumping activity. In M263L, multifrequency EPR studies indicate the coppers are still electronically coupled, while all the other metal centers in M263L appear unchanged, by visible, EPR, and FTIR spectroscopy. Nevertheless, heme a3 is very slow to reduce with cytochrome c or dithionite under stopped-flow and steady-state conditions. This effect appears to be secondary to the change in redox equilibrium between Cu(A) and heme a. The studies reported here and in Wang et al. [Wang, K., Geren, L., Zhen, Y., Ma, L., Ferguson-Miller, S., Durham, B., and Millett, F. (2002) Biochemistry 41, 2298-2304] demonstrate that altering the ligands of Cu(A) can influence the rate and equilibrium of electron transfer between Cu(A) and heme a, but that the native ligation state is not essential for proton pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号