首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High serum levels of C-reactive protein (CRP), a strong predictor of cardiovascular events, are documented in patients with type 2 diabetes. Accumulating evidence suggests that CRP could directly promote arterial damage. To determine the role of CRP in diabetic atherosclerosis, we examined the effect of CRP on the expression of macrophage lipoprotein lipase (LPL), a proatherogenic molecule upregulated in type 2 diabetes. Treatment of human macrophages with native CRP increased, in a dose- and time-dependent manner, LPL protein expression and secretion. Modified CRP reproduced these effects. Preincubation of human macrophages with antioxidants, protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) inhibitors prevented CRP-induced LPL expression. Exposure of human macrophages to CRP further increased intracellular reactive oxygen species generation, classic PKC isozymes expression, and extracellular signal-regulated protein kinase 1/2 phosphorylation. In CRP-treated J774 macrophages, increased macrophage LPL mRNA levels and enhanced binding of nuclear proteins to the activated protein-1 (AP-1)-enhancing element were observed. These effects were prevented by antioxidants, as well as by PKC, MAPK, and AP-1 inhibitors. These data show for the first time that CRP directly increases macrophage LPL expression and secretion. Given the predominant role of macrophage LPL in atherogenesis, LPL might represent a novel factor underlying the adverse effect of CRP on the diabetic vasculature.  相似文献   

2.
LPS induces in bone marrow macrophages the transient expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1). Because MKP-1 plays a crucial role in the attenuation of different MAPK cascades, we were interested in the characterization of the signaling mechanisms involved in the control of MKP-1 expression in LPS-stimulated macrophages. The induction of MKP-1 was blocked by genistein, a tyrosine kinase inhibitor, and by two different protein kinase C (PKC) inhibitors (GF109203X and calphostin C). We had previously shown that bone marrow macrophages express the isoforms PKC beta I, epsilon, and zeta. Of all these, only PKC beta I and epsilon are inhibited by GF109203X. The following arguments suggest that PKC epsilon is required selectively for the induction of MKP-1 by LPS. First, in macrophages exposed to prolonged treatment with PMA, MKP-1 induction by LPS correlates with the levels of expression of PKC epsilon but not with that of PKC beta I. Second, G?6976, an inhibitor selective for conventional PKCs, including PKC beta I, does not alter MKP-1 induction by LPS. Last, antisense oligonucleotides that block the expression of PKC epsilon, but not those selective for PKC beta I or PKC zeta, inhibit MKP-1 induction and lead to an increase of extracellular-signal regulated kinase activity during the macrophage response to LPS. Finally, in macrophages stimulated with LPS we observed significant activation of PKC epsilon. In conclusion, our results demonstrate an important role for PKC epsilon in the induction of MKP-1 and the subsequent negative control of MAPK activity in macrophages.  相似文献   

3.
We investigated the effects of high concentrations of glucose on plasminogen activator inhibitor-1 (PAI-1) gene expression in cultured rat vascular smooth muscle cells (VSMC). In response to a high glucose concentration (27.5 mM), PAI-1 mRNA increased within 2 h, peaked at 4 h, remained elevated for another 4 h, then decreased to basal levels at 24 h. On the other hand, mannose at the same concentration (22.5 mM mannose plus 5.5 mM glucose) as an osmotic control had little effect on PAI-1 mRNA expression. The expression of PAI-1 mRNA that was also increased by H(2)O(2), angiotensin II, or phorbol myristate acetate, was reversed by the MAPK kinase (MEK) inhibitor PD98059 or the specific protein kinase C (PKC) inhibitor GF109203X. High glucose appeared to activate MAPK and PKC in VSMC judging from Elk-1 and AP-1 activation, respectively. PD98059 inhibited and GF109203X prevented subsequent PAI-1 induction by glucose. These results suggest that glucose at high concentrations induces PAI-1 gene expression in VSMC at least partially via MAPK and PKC activation. This direct effect of glucose might have important implications for the increased plasma concentrations of PAI-1 and possibly atherosclerosis that are associated with diabetes.  相似文献   

4.
NF-kappa B plays a critical role in coordinating the control of gene expression during monocyte/macrophage activation. In this report we describe our investigation of the mechanisms of LPS-induced NF-kappa B activation and IL-12 expression in murine peritoneal suppressor macrophages. Treatment of these macrophages with LPS induced I kappa B alpha degradation and NF-kappa B activation. EMSAs demonstrated that NF-kappa B bound to a cis-acting element located in the murine IL-12 p40 promoter. LPS signal transduction has been shown to involve a variety of signal pathways. The results in this paper indicate that LPS-induced NF-kappa B binding activity was independent of PKC, PKA, ERK, and p38 MAPK, but was regulated by proteasome. Furthermore, Proteasome Inhibitor I abolished the LPS-induced mRNA expression of IL-12 p35 and p40, and SB203580 reduced these mRNA levels, whereas the blockade of PKC, PKA, and ERK had little effect. These data demonstrate that the LPS-induced activation of proteasome. I kappa B. NF-kappa B and p38 MAPK signal pathways regulate the IL-12 expression in murine peritoneal suppressor macrophages.  相似文献   

5.
Macrophage asialoglycoprotein-binding protein (M-ASGP-BP) is a Gal/GalNAc-specific lectin, which functions as an endocytosis receptor. We found that the expression of M-ASGP-BP mRNA in bone marrow cells was induced during the differentiation into macrophages. To investigate the mechanism by which M-ASGP-BP mRNA expression is induced, we used U937 cells as a model. Treatment of U937 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in M-ASGP-BP mRNA expression within 6 h. This induction was completely inhibited by PKC inhibitors, calphostin C, and staurosporine. Furthermore, MAP kinase inhibitors PD98059, but not SB202190, blocked M-ASGP-BP mRNA expression. These data indicate that M-ASGP-BP mRNA expression occurs through the activation of PKC and the MAPK classical pathway in the course of cell differentiation into macrophages.  相似文献   

6.
The hypertriglyceridemia of diabetes is accompanied by decreased lipoprotein lipase (LPL) activity in adipocytes. Although the mechanism for decreased LPL is not known, elevated glucose is known to increase diacylglycerol, which activates protein kinase C (PKC). To determine whether PKC is involved in the regulation of LPL, we studied the effect of 12-O-tetradecanoyl phorbol 13-acetate (TPA) on adipocytes. LPL activity was inhibited when TPA was added to cultures of 3T3-F442A and rat primary adipocytes. The inhibitory effect of TPA on LPL activity was observed after 6 h of treatment, and was observed at a concentration of 6 nM. 100 nM TPA yielded maximal (80%) inhibition of LPL. No stimulation of LPL occurred after short term addition of TPA to cultures. To determine whether TPA treatment of adipocytes decreased LPL synthesis, cells were labeled with [35S]methionine and LPL protein was immunoprecipitated. LPL synthetic rate decreased after 6 h of TPA treatment. Western blot analysis of cell lysates indicated a decrease in LPL mass after TPA treatment. Despite this decrease in LPL synthesis, there was no change in LPL mRNA in the TPA-treated cells. Long term treatment of cells with TPA is known to down-regulate PKC. To assess the involvement of the different PKC isoforms, Western blotting was performed. TPA treatment of 3T3-F442A adipocytes decreased PKC alpha, beta, delta, and epsilon isoforms, whereas PKC lambda, theta, zeta, micro, iota, and gamma remained unchanged or decreased minimally. To directly assess the effect of PKC inhibition, PKC inhibitors (calphostin C and staurosporine) were added to cultures. The PKC inhibitors inhibited LPL activity rapidly (within 60 min). Thus, activation of PKC did not increase LPL, but inhibition of PKC resulted in decreased LPL synthesis by inhibition of translation, indicating a constitutive role of PKC in LPL gene expression.  相似文献   

7.
HJ Sung  SJ Son  SJ Yang  KJ Rhee  YS Kim 《BMB reports》2012,45(7):414-418
Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.  相似文献   

8.
Receptor activator of nuclear factor-kappaB (RANK) plays a central role in the regulation of osteoclast differentiation and activation, but the mechanisms underlying its expression remain to be elucidated. In the present study we showed that expression of RANK was strongly induced by phorbol-12-myristate-13-acetate (PMA) during monocyte differentiation of U937 cells, and was enhanced by concomitant treatment with vitamin D3. Induction was dramatically inhibited by protein kinase C (PKC) inhibitors such as rottlerin and G?6983, but not by G?6976. Interestingly, rottlerin, a selective inhibitor of PKCdelta, reduced PMA-induced RANK expression while having no effect on CD11b expression. However overexpression of wild type PKCdelta, or a kinase-inactive mutant, did not affect PMA-induction of RANK, suggesting that rottlerin inhibits PMA-induced expression of RANK via a PKCdelta-independent mechanism. Rottlerin also inhibited PMA-induced phosphorylation of p38 mitogen-activated protein kinase (p38MAPK), and the p38 MAPK inhibitor SB203580 inhibited induction of RANK. Rottlerin and SB203580 also substantially reduced RANK mRNA expression in mouse BMM cells stimulated with macrophage colony stimulating factor (M-CSF). Together, these results demonstrate that expression of RANK is dependent upon a rottlerin-sensitive and p38MAPK-dependent pathway during monocyte differentiation.  相似文献   

9.
Components of the extracellular matrix contain cryptic domains, which are exposed by proteolysis and elicit biological responses distinct from intact molecules. The disparate cellular response to extracellular matrix fragments and parent intact molecules suggests differential recognition and signaling pathways. In experiments reported here, we demonstrate that urokinase and matrix metalloproteinase-9 expression by RAW264.7 macrophages is stimulated by a synthetic laminin peptide derived from the alpha1-chain (SRARKQAASIKVAVSADR), whereas intact laminin-1 has no effect on proteinase expression by macrophages. Incubation of macrophages with alpha1:SRARKQAASIKVAVSADR stimulates tyrosine phosphorylation of several proteins including mitogen-activated protein kinase (MAPK)(erk1/2). In contrast, neither intact laminin-1 nor the beta1-chain peptide CDPGYIGSR stimulated protein tyrosine phosphorylation in these cells. Inhibition of tyrosine kinases or protein kinase C blocked alpha1-chain peptide-induced phosphorylation of MAPK(erk1/2) and the up-regulation of steady state levels of urokinase mRNA and matrix metalloproteinase-9 activity. A MAPK kinase inhibitor blocked alpha1-chain-induced phosphorylation of MAPK(erk1/2) and the induction of proteinase expression. Intact laminin-1, which was unable to induce macrophage proteinase expression, failed to stimulate the phosphorylation of MAPK(erk1/2). These data demonstrate that incubation of macrophages with alpha1:SRARKQAASIKVAVSADR, but not intact laminin-1, triggers protein kinase C-dependent activation of MAPK(erk1/2), leading to the up-regulation of proteinase expression.  相似文献   

10.
11.
12.
13.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase (statins) ameliorate atherosclerotic diseases. Macrophages play an important role in the development and subsequent stability of atherosclerotic plaques. We reported previously that oxidized low density lipoprotein (Ox-LDL) induced macrophage proliferation through the secretion of granulocyte/macrophage colony-stimulating factor (GM-CSF) and the consequent activation of p38 MAPK. The present study was designed to elucidate the mechanism of the inhibitory effect of statins on macrophage proliferation. Mouse peritoneal macrophages were used in our study. Cerivastatin and simvastatin each inhibited Ox-LDL-induced [(3)H]thymidine incorporation into macrophages. Statins did not inhibit Ox-LDL-induced GM-CSF production, but inhibited GM-CSF-induced p38 MAPK activation. Farnesyl transferase inhibitor and geranylgeranyl transferase inhibitor inhibited GM-CSF-induced macrophage proliferation, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the effect of statins. GM-CSF-induced p38 MAPK phosphorylation was also inhibited by farnesyl transferase inhibitor or geranylgeranyl transferase inhibitor, and farnesyl pyrophosphate and geranylgeranyl pyrophosphate prevented the suppression of GM-CSF-induced p38 MAPK phosphorylation by statins. Furthermore, we found that statin significantly inhibited the membrane translocation of the small G protein family members Ras and Rho. GM-CSF-induced p38 MAPK activation and macrophage proliferation was partially inhibited by overexpression of dominant negative Ras and completely by that of RhoA. In conclusion, statins inhibited GM-CSF-induced Ras- or RhoA-p38 MAPK signal cascades, thereby suppressing Ox-LDL-induced macrophage proliferation. The significant inhibition of macrophage proliferation by statins may also explain, at least in part, their anti-atherogenic action.  相似文献   

14.
We previously reported that AGEs can induce macrophage growth. In this paper, we examined whether advanced glycation end products (AGE) of protein induced GM-CSF production of macrophages. AGE of bovine serum albumin markedly stimulated not only the expression of GM-CSF mRNA, but also GM-CSF secretion in macrophage supernatant. Thus GM-CSF is suggested to be an endogenous signal for macrophage growth induction by AGEs.  相似文献   

15.
Macrophages are important cells in the pathogenesis of atherosclerosis because of their tendency to accumulate lipid and become transformed into foam cells. Cultured human monocyte-derived macrophages spontaneously secrete lipoprotein lipase (LPL), and LPL has been linked to increased lipid uptake by these cells. Because secretion of various macrophage products depends on activation by lymphokines, we studied the effects of immunoregulatory lymphokines on LPL secretion by cultured human macrophages. After culturing cells in RPMI 1640 medium with 20% fetal calf serum, recombinant human gamma-interferon (gamma-INF), interleukin-1 (IL-1), and interleukin-2 (IL-2) were added to the medium and LPL secretion was assessed by measuring LPL activity and/or LPL mass in the medium. Gamma-INF suppressed LPL production both when added to freshly plated cultures of human blood monocytes, as well as when added to monocyte/macrophages from mature cultures (day 6) that were producing large amounts of LPL. IL-1 inhibited medium LPL when added to freshly plated cultures, but not when added to mature cultures. On the other hand, IL-2 did not inhibit LPL in freshly plated cultures, but produced a dose-dependent suppression of LPL from mature cultures. None of the cytokines were cytotoxic to macrophages, and cells that were cultured in gamma-INF demonstrated partial recovery from LPL-suppressive doses of the cytokine. After exposure of cells to 50 U/ml of gamma-INF and 50 U/ml of IL-2 for 3 days, LPL mRNA levels, when expressed as LPL/gamma-actin ratios, were 42% and 53% of controls, respectively. Thus, activation of human macrophages in vitro by gamma-INF resulted in a suppression of LPL production.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
We previously reported that AGEs can induce macrophage growth. In this paper, we examined whether advanced glycation end products (AGE) of protein induced GM-CSF production of macrophages. AGE of bovine serum albumin markedly stimulated not only the expression of GM-CSF mRNA, but also GM-CSF secretion in macrophage supernatant. Thus GM-CSF is suggested to be an endogenous signal for macrophage growth induction by AGEs.  相似文献   

17.
Protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) in cumulus cells are involved in FSH-induced meiotic resumption of cumulus-enclosed oocytes (CEOs), but their regulation and cross talk are unknown. The present experiments were designed to investigate 1) the possible involvement of MAPK cascade in PKC-induced meiotic resumption; 2) the regulation of PKC on MAPK activity in FSH-induced oocyte maturation; and 3) the pattern of PKC and MAPK function in induced meiotic resumption of mouse oocytes. PKC activators, phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol (OAG), induced the meiotic resumption of CEOs and activation of MAPK in cumulus cells, whereas this effect could be abolished by PKC inhibitors, calphostin C and chelerythrine, or MEK inhibitor U0126. These results suggest that PKC might induce the meiotic reinitiation of CEOs by activating MAPK in cumulus cells. Both PKC inhibitors and U0126 inhibited the FSH-induced germinal vesicle breakdown (GVBD) of oocytes and MAPK activation in cumulus cells, suggesting that PKC and MAPK are involved in FSH-induced GVBD of mouse CEOs. Protein synthesis inhibitor cycloheximide (CHX) inhibited FSH- or PMA-induced oocyte meiotic resumption, but not the MAPK activation in cumulus cells. FSH and PKC activators induced the GVBD in denuded oocytes cocultured with cumulus cells in hypoxanthine (HX)-supplemented medium, and this effect could be reversed by U0126. Thus, when activated by FSH and PKC, MAPK may stimulate the synthesis of specific proteins in cumulus cells followed by secretion of an unknown positive factor that is capable of inducing GVBD in oocytes.  相似文献   

18.
19.
The effect of prostaglandin F2alpha (PGF2alpha) on glucose transport in differentiated 3T3-L1 adipocytes was examined. Whereas PGF2alpha had little influence on insulin-stimulated 2-deoxyglucose uptake, it increased basal glucose uptake in a time- and dose-dependent manner, reaching maximum at approximately 8 h. The long-term effect of PGF2alpha on glucose transport was inhibited by both cycloheximide and actinomycin D. In concord, while the content of GLUT4 protein was not altered, immunoblot and Northern blot analyses revealed that both GLUT1 protein and mRNA levels were increased by exposure of cells to PGF2alpha. The effect of PGF2alpha on glucose uptake was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate (PMA), the stimulatory effects of PGF2alpha on glucose transport and GLUT1 mRNA accumulation were both inhibited. In accord, PMA was shown to stimulate GLUT1 mRNA accumulation. To further investigate if PKC may be activated by PGF2alpha, we tested several diacylglycerol-sensitive PKC isozymes and found that PGF2alpha was able to activate PKCepsilon. Taken together, these results indicate that PGF2alpha may enhance glucose transport in 3T3-L1 adipocytes by stimulating GLUT1 expression via a PKC-dependent mechanism.  相似文献   

20.
The effects of sphingosine 1-phosphate (S1P) on prostaglandin I(2) (PGI(2)) production and cyclooxygenase (COX) expression in cultured rat vascular smooth muscle cells (VSMCs) were investigated. S1P stimulated PGI(2) production in a concentration-dependent manner, which was completely suppressed by NS-398, a selective COX-2 inhibitor, as determined by radioimmunoassay. S1P stimulated COX-2 protein and mRNA expressions in a concentration- and time-dependent manner, while it had no effect on COX-1 expression. S1P(2) and S1P(3) receptors mRNA were abundantly expressed in rat VSMCs. Suramin, an antagonist of S1P(3) receptor, almost completely inhibited S1P-induced COX-2 expression. Pretreatment of VSMCs with pertussis toxin (PTX) partially, but significantly inhibited S1P-induced PGI(2) production and COX-2 expression. S1P also activated extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). However, neither PD 98059, a selective inhibitor of ERK activation, nor SB 203580, a selective inhibitor of p38 MAPK, had a significant inhibitory effect on S1P-induced COX-2 expression, suggesting that the MAPK activation does not play main roles in S1P-induced COX-2 induction. S1P-induced COX-2 expression was inhibited by PP2, an inhibitor of Src-family tyrosine kinase, Ca(2+) depletion, and GF 109203X, an inhibitor of protein kinase C (PKC). These results suggest that S1P stimulates COX-2 induction in rat VSMCs through mechanisms involving Ca(2+)-dependent PKC and Src-family tyrosine kinase activation via S1P(3) receptor coupled to PTX-sensitive and -insensitive G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号