共查询到20条相似文献,搜索用时 0 毫秒
1.
Laskowska E 《Postepy biochemii》2007,53(1):19-26
Small heat shock proteins (sHsps) belong to molecular chaperones, which protect prokaryotic and eukaryotic cells against deleterious effects, of stress. sHsps prevent stress induced, irreversible aggregation of damaged proteins and facilitate renaturation of bound substrates cooperating with other molecular chaperones. This review summarizes recent studies focused mainly on the involvement of sHsps in diseases related to protein aggregation. sHsps are often a component of protein aggregates forming during progress of neurodegenerative disorders. Mutation in sHsps genes have been identified, which are responsible for development of cataract, desmin related myopathy and neuropathies. sHsps protect cells against oxidative stress resulting from ischemia/reperfusion during heart or brain stroke. Several studies indicate that sHsp participate in regulation of apoptosis and are involved in cancerogenesis. Uncovering the sHsps role in diseases enable to develop new therapeutic strategies. 相似文献
2.
Meredith E Jackrel 《Cell cycle (Georgetown, Tex.)》2014,13(9):1379-1383
Aberrant protein folding is severely problematic and manifests in numerous disorders, including amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington disease (HD), and Alzheimer disease (AD). Patients with each of these disorders are characterized by the accumulation of mislocalized protein deposits. Treatments for these disorders remain palliative, and no available therapeutics eliminate the underlying toxic conformers. An intriguing approach to reverse deleterious protein misfolding is to upregulate chaperones to restore proteostasis. We recently reported our work to re-engineer a prion disaggregase from yeast, Hsp104, to reverse protein misfolding implicated in human disease. These potentiated Hsp104 variants suppress TDP-43, FUS, and α-synuclein toxicity in yeast, eliminate aggregates, reverse cellular mislocalization, and suppress dopaminergic neurodegeneration in an animal model of PD. Here, we discuss this work and its context, as well as approaches for further developing potentiated Hsp104 variants for application in reversing protein-misfolding disorders. 相似文献
3.
Macromolecular crowding is expected to have a significant effect on protein aggregation. In the present study we analyzed the effect of macromolecular crowding on fibrillation of four proteins, bovine S-carboxymethyl-alpha-lactalbumin (a disordered form of the protein with reduced three out of four disulfide bridges), human insulin, bovine core histones, and human alpha-synuclein. These proteins are structurally different, varying from natively unfolded (alpha-synuclein and core histones) to folded proteins with rigid tertiary and quaternary structures (monomeric and hexameric forms of insulin). All these proteins are known to fibrillate in diluted solutions, however their aggregation mechanisms are very divers and some of them are able to form different aggregates in addition to fibrils. We studied how macromolecular crowding guides protein between different aggregation pathways by analyzing the effect of crowding agents on the aggregation patterns under the variety of conditions favoring different aggregated end products in diluted solutions. 相似文献
4.
CD98 is a protein found on the surface of many activated cell types, and is implicated in the regulation of cellular differentiation, adhesion, growth, and apoptosis. Despite many studies addressing CD98 function, there is little information on the intracellular signalling pathways that mediate its activity. In this study, we examine protein kinase pathways that are activated following ligation by the CD98 antibody AHN-18, an antibody that induces U937 homotypic aggregation and inhibits antigen presenting activity and T-cell activation. Ligation by CD98 antibody AHN-18 induces tyrosine kinase activity, but inhibition of this activity does not affect U937 aggregation. Ligation also induces membrane translocation of the serine/threonine kinase novel PKCdelta, but not other members of the PKC family. Translocation is blocked by rottlerin, and this inhibitor also blocks aggregation. PKCdelta activation in turn mediates activation of ERK1/2 and p38, as well as tyrosine phosphorylation of multiple proteins, and MAPK activation is essential for cellular aggregation. One of the targets of CD98-induced tyrosine phosphorylation is itself PKCdelta, suggesting that this phosphorylation may act as a negative feedback to limit the overall activation of the CD98 pathway. 相似文献
5.
Significantly increased prevalences of particular HL-A antigens have been reported for many human diseases. The correlation is particularly striking in ankylosing spondylitis, Reiter''s syndrome, psoriasis and some immunopathic disorders, so that HL-A typing may be of great value in diagnosis. The possible mechanisms whereby these associations may occur suggest the cause of certain disorders, and further investiatation will likely help in the understanding of the pathogenesis of many diseases. 相似文献
6.
Thakker RV 《Cell calcium》2004,35(3):275-282
The human calcium-sensing receptor (CaSR) is a 1078 amino acid cell surface protein, which is predominantly expressed in the parathyroids and kidney, and is a member of the family of G protein-coupled receptors. The CaSR allows regulation of parathyroid hormone (PTH) secretion and renal tubular calcium reabsorption in response to alterations in extracellular calcium concentrations. The human CaSR gene is located on chromosome 3q21.1 and loss-of-function CaSR mutations have been reported in the hypercalcaemic disorders of familial benign (hypocalciuric) hypercalcaemia (FHH, FBH or FBHH) and neonatal severe primary hyperparathyroidism (NSHPT). However, some individuals with loss-of-function CaSR mutations remain normocalcaemic. In addition, there is genetic heterogeneity amongst the forms of FHH. Thus, the majority of FHH patients have loss-of-function CaSR mutations, and this is referred to as FHH type 1. However, in one family, the causative gene for FHH is located on 19p13, referred to as FHH type 2, and in another family it is located on 19q13, referred to as FHH type 3. Gain-of-function CaSR mutations have been shown to result in autosomal dominant hypocalcaemia with hypercalciuria (ADHH) and Bartter's syndrome type V. CaSR auto-antibodies have been found in FHH patients who did not have loss-of-function CaSR mutations, and in patients with an acquired form (i.e. autoimmune) of hypoparathyroidism. Thus, abnormalities of the CaSR are associated with three hypercalcaemic and three hypocalcaemic disorders. 相似文献
7.
High-frequency conjugation associated with Streptococcus lactis donor cell aggregation 总被引:21,自引:9,他引:21
下载免费PDF全文

Conjugal transfer of the Streptococcus lactis 712 lactose plasmid was found to occur at a low frequency. Variants of this plasmid were selected which had much greater donor abilities and which also exhibited an unusual cell aggregation phenotype. 相似文献
8.
The process of protein misfolding and aggregation has been associated with an increasing number of pathological conditions that include Alzheimer's and Parkinson's diseases, and type II diabetes. In addition, the discovery that proteins unrelated to any known disorder can be converted into aggregates of morphologies similar to those found in diseased tissue has lead to the recognition that this type of assemblies represents a generic state of polypeptide chains. Therefore, despite the enormous complexity of the in vivo mechanisms that have evolved in living organisms to prevent and control the formation of protein aggregates, the process of aggregation itself appears ultimately to be caused by intrinsic properties of polypeptide chains, in particular by the tendency of the backbone to form hydrogen bonds, and be modulated by the presence of specific patterns of hydrophobic and charged residues. Theoreticians have just recently started to respond to the challenge of identifying the determinants of the aggregation process. In this review, we provide an account of the theoretical results obtained so far. 相似文献
9.
The aggregation of soluble proteins into fibrillar species is a complex process that spans many lengths and time scales, and that involves the formation of numerous on-pathway and off-pathway intermediate species. Despite this complexity, several elements underlying the aggregation process appear to be universal. The kinetics typically follows a nucleation-growth process, and proteins with very different sequences aggregate to form similar fibril structures, populating intermediates with sufficient structural similarity to bind to a common antibody. This review focuses on a computational approach that exploits the common features of aggregation to simplify or 'coarse-grain' the representation of the protein. We highlight recent developments in coarse-grained modeling and illustrate how these models have been able to shed new light into the mechanisms of protein aggregation and the nature of aggregation intermediates. The roles of aggregation prone conformations in the monomeric state and the influence of inherent β-sheet and aggregation propensities in modulating aggregation pathways are discussed. 相似文献
10.
Ramdzan YM Polling S Chia CP Ng IH Ormsby AR Croft NP Purcell AW Bogoyevitch MA Ng DC Gleeson PA Hatters DM 《Nature methods》2012,9(5):467-470
We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies. 相似文献
11.
Raibekas AA 《Analytical biochemistry》2008,380(2):331-332
A method for studying protein aggregation with an automated melting point apparatus is described. The method employs thermal ramping and can generate a series of protein aggregation curves. The midpoint aggregation curve-associated temperature (Ta) is used to evaluate the difference between the curves where the lower Ta value corresponds to a higher aggregation propensity. The applicability of the method was demonstrated with human interleukin-1 receptor antagonist (IL-1ra) as a protein aggregation model. The method could be employed for rapid evaluation of various factors such as mutations, buffers, and excipients influencing protein aggregation propensity under the thermal stress. 相似文献
12.
13.
Protein aggregation diseases are characterized by intracellular or extracellular deposition of misfolded and aggregated proteins. These aggregated deposits contain multiple proteinaceous and non-protein components that are thought to play critical roles in the etiology and pathogenesis of protein aggregation diseases in vivo. One of these components, the sulfated glycosaminoglycans (GAGs), includes heparan sulfate, chondroitin sulfate, and keratan sulfate. The sulfated GAGs are negatively charged heteropolysaccharides expressed in all mammalian tissues. Enzymatically generated structural patterns and the degree of sulfation in GAGs determine GAGs’ specific interactions with their protein ligands. Here, we review the potential roles of the sulfated GAGs in the pathogenesis and progression of protein aggregation diseases from a perspective of their sulfation modification. We also discuss the possibility of sulfated GAGs as therapeutic targets for protein aggregation diseases. 相似文献
14.
Cellular strategies for controlling protein aggregation 总被引:2,自引:0,他引:2
The aggregation of misfolded proteins is associated with the perturbation of cellular function, ageing and various human disorders. Mounting evidence suggests that protein aggregation is often part of the cellular response to an imbalanced protein homeostasis rather than an unspecific and uncontrolled dead-end pathway. It is a regulated process in cells from bacteria to humans, leading to the deposition of aggregates at specific sites. The sequestration of misfolded proteins in such a way is protective for cell function as it allows for their efficient solubilization and refolding or degradation by components of the protein quality-control network. The organized aggregation of misfolded proteins might also allow their asymmetric distribution to daughter cells during cell division. 相似文献
15.
During the course of the transmissible spongiform encephalopathy diseases, a protease-resistant ordered aggregate of scrapie prion protein (PrP(Sc)) accumulates in affected animals. From mechanistic and therapeutic points of view, it is relevant to determine the extent to which PrP(Sc) formation and aggregation are reversible. PrP(Sc) solubilized with 5 m guanidine hydrochloride (GdnHCl) was unfolded to a predominantly random coil conformation. Upon dilution of GdnHCl, PrP refolded into a conformation that was high in alpha-helix as measured by CD spectroscopy, similar to the normal cellular isoform of PrP (PrP(C)). This provided evidence that PrP(Sc) can be induced to revert to a PrP(C)-like conformation with a strong denaturant. To examine the reversibility of PrP(Sc) formation and aggregation under more physiological conditions, PrP(Sc) aggregates were washed and resuspended in buffers lacking GdnHCl and monitored over time for the appearance of soluble PrP. No dissociation of PrP from the PrP(Sc) aggregates was detected in aqueous buffers at pH 6 and 7.5. The effective solubility of PrP was <0.7 nm. Treatment of PrP(Sc) with proteinase K (PK) before the analysis did not enhance the dissociation of PrP from the PrP(Sc) aggregates. Treatment with 2.5 m GdnHCl, which partially and reversibly unfolds PrP(Sc), caused only limited dissociation of PrP from the aggregates. The PrP that dissociated from the aggregates over time was entirely PK-sensitive, like PrP(C), whereas all of the aggregated PrP was partially PK-resistant. PrP also dissociated from aggregates of protease-resistant PrP generated in a cell-free conversion reaction, but only if treated with GdnHCl. Overall, the results suggest that PrP aggregation is not appreciably reversible under physiological conditions, but dissociation and refolding can be enhanced by treatments with GdnHCl. 相似文献
16.
17.
18.
I. N. Naletova E. V. Schmalhausen I. N. Shalova A. P. Pleten’ K. Tsiroulnikov T. Haertle V. I. Muronetz 《Biochemistry (Moscow) Supplemental Series B: Biomedical Chemistry》2007,1(2):160-163
To clarify the role of chaperones in the development of amyloid diseases, the interaction of the chaperonin GroEL with misfolded proteins and recombinant prions has been studied. The efficiency of the chaperonin-assisted folding of denatured glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was shown to be decreased in the presence of prions. Prions are capable of binding to GroEL immobilized on Sepharose, but this does not prevent the interaction between GroEL and other denatured proteins. The size of individual proteins (GroEL, GAPDH, and the recombinant prion) and aggregates formed after their mixing have been determined by the dynamic light scattering analysis. It was shown that at 25°C, the non-functioning chaperonin (equimolar mixture of GroEL and GroES in the absence of Mg-ATP) bound prion yielding large aggregates (greater than 400 nm). The addition of Mg-ATP decreased significantly the size of the aggregates to 70–80 nm. After blocking of one of the chaperonin active sites by oxidized denatured GAPDH, the aggregate size increased to 1200 nm, and the addition of Mg-ATP did not prevent the aggregation. These data indicate the significant role of chaperonins in the formation of amyloid structures and demonstrate the acceleration of aggregation in the presence of functionally inactive chaperonins. The suggested model can be used for the analysis of the efficiency of antiaggregants in the system containing chaperonins. 相似文献
19.
The mechanism of the vitamin K-dependent post-translational carboxylation of the gamma-carbon atom of glutamic acid residues in proteins remains obscure. Experiments were performed in vivo and in vitro in an attempt to establish a role for biotin in the transfer of the carboxyl group. Weanling male rats were fed on a biotin-deficient diet until severe biotin deficiency was induced. Their degree of biotin deficiency was documented by assaying for liver acetyl-CoA carboxylase activity, which was about 15% of normal. However, one-stage and two-stage prothrombin times measured on the plasmas were normal. In addition, the liver microsomal fraction did not contain any more prothrombin precursor than did that of normal rat liver. Experiments were done in vitro in which vitamin K-dependent fixing of 14CO2 was measured in the liver microsomal fraction from vitamin K-deficient male rats in the presence or absence of avidin. No evidence for an avidin-sensitive critical biotin-containing site was obtained. Thus neither series of experiments suggests a role for biotin; the data are compatible with carboxyl transfer occurring either through a carboxylated vitamin K intermediate; or via a yet to be identified intermediate, or perhaps via CO2 itself. 相似文献
20.
The effect of solvent structuring induced by molecular crowding is elucidated within a competitive situation involving protein folding and aggregation. Two patterned fragments of amyloidogenic proteins are chosen as study cases and analyzed by molecular dynamics with an implicit treatment of the solvent. The extent of crowding needed to induce aggregation is determined. The results constitute a first step to assess the relevance of in vivo environments in understanding fibrillogenesis. The approach is independently validated by satisfactorily reproducing the results of an all-atom explicit solvent trajectory. 相似文献