首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(2):284-285
  相似文献   

2.
3.
JNK signaling functions to induce defense mechanisms that protect organisms against acute oxidative and xenobiotic insults. Using Drosophila as a model system, we investigated the role of autophagy as such a JNK-regulated protective mechanism. We show that oxidative stress can induce autophagy in the intestinal epithelium by a mechanism that requires JNK signaling. Consistently, artificial activation of JNK in the gut gives rise to an autophagy phenotype. JNK signaling can induce the expression of several autophagy-related (ATG) genes, and the integrity of these genes is required for the stress protective function of the JNK pathway. In contrast to autophagy induced by oxidative stress, non-stress related autophagy, as it occurs for example in starving adipose or intestinal tissue, or during metamorphosis, proceeds independently of JNK signaling. Autophagy thus emerges as a multifunctional process that organisms employ in a variety of different situations using separate regulatory mechanisms.  相似文献   

4.
Fluoride is an effective caries prophylactic, but at high doses can also be an environmental health hazard. Acute or chronic exposure to high fluoride doses can result in dental enamel and skeletal and soft tissue fluorosis. Dental fluorosis is manifested as mottled, discolored, porous enamel that is susceptible to dental caries. Fluoride induces cell stress, including endoplasmic reticulum stress and oxidative stress, which leads to impairment of ameloblasts responsible for dental enamel formation. Recently we reported that fluoride activates SIRT1 and autophagy as an adaptive response to protect cells from stress. However, it still remains unclear how SIRT1/autophagy is regulated in dental fluorosis. In this study, we demonstrate that fluoride exposure generates reactive oxygen species (ROS) and the resulting oxidative damage is counteracted by SIRT1/autophagy induction through c-Jun N-terminal kinase (JNK) signaling in ameloblasts. In the mouse-ameloblast-derived cell line LS8, fluoride induced ROS, mitochondrial damage including cytochrome-c release, up-regulation of UCP2, attenuation of ATP synthesis, and H2AX phosphorylation (γH2AX), which is a marker of DNA damage. We evaluated the effects of the ROS inhibitor N-acetylcysteine (NAC) and the JNK inhibitor SP600125 on fluoride-induced SIRT1/autophagy activation. NAC decreased fluoride-induced ROS generation and attenuated JNK and c-Jun phosphorylation. NAC decreased SIRT1 phosphorylation and formation of the autophagy marker LC3II, which resulted in an increase in the apoptosis mediators γH2AX and cleaved/activated caspase-3. SP600125 attenuated fluoride-induced SIRT1 phosphorylation, indicating that fluoride activates SIRT1/autophagy via the ROS-mediated JNK pathway. In enamel organs from rats or mice treated with 50, 100, or 125 ppm fluoride for 6 weeks, cytochrome-c release and the DNA damage markers 8-oxoguanine, p-ATM, and γH2AX were increased compared to those in controls (0 ppm fluoride). These results suggest that fluoride-induced ROS generation causes mitochondrial damage and DNA damage, which may lead to impairment of ameloblast function. To counteract this impairment, SIRT1/autophagy is induced via JNK signaling to protect cells/ameloblasts from fluoride-induced oxidative damage that may cause dental fluorosis.  相似文献   

5.
Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT‐generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5‐ to 6‐month‐old mice over‐expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus‐dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8‐hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over‐expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.  相似文献   

6.
c-Jun N-terminal kinase (JNK), or stress-activated protein kinase, is an important member of the mitogen-activated protein kinase superfamily, the members of which are readily activated by many environmental stimuli. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important groups of free radicals that are capable of eliciting direct damaging effects or acting as critical intermediate signaling molecules, leading to oxidative and nitrosative stress and a series of biological consequences. Recently there has been an increasing amount of research interest focusing on the regulatory role of JNK activation in ROS-and RNS-induced cellular responses. In this review we will first summarize and discuss some recent findings regarding the signaling mechanisms of ROS-or RNS-mediated JNK activation. Second, we will talk about the role of JNK in ROS-or RNS-mediated cell death (both apoptosis and necrosis). Finally, we will analyze the emerging evidence for the involvement of ROS and RNS as mediators in tumor necrosis factor alpha-induced apoptosis. Taken together, the accumulating knowledge about the ROS/RNS-induced JNK signaling pathway has greatly advanced our understanding of the complex processes deciding the cellular responses to environmental stress.  相似文献   

7.
8.
Oxidative stress takes part in the development of the neurodegenerative disease. Eriodictyol, a flavonoid, commonly presents in citrus fruits, which was well-known for its various bioactivities. The purpose of this study was to investigate the neuroprotective effects of eriodictyol on lipopolysaccharide (LPS)-induced neuroinflammation, oxidative stress, synaptic dysfunctions, and the potential mechanisms involved. We found that eriodictyol explicitly restored LPS-triggered the decrease of cell viability and the mitochondrial potential as well as inflammation responses via mitogen-activated protein kinases (MAPKs) and nuclear factor κB (NF-κB) pathways regulated by reactive oxygen species (ROS). Besides, eriodictyol alleviated LPS-induced oxidative stress via NF-E2-Related factor2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway in vivo and in vitro. Furthermore, eriodictyol reduced LPS-elicited synaptic dysfunctions via increasing the expression of silent information regulator 1 (Sirt1). Overall, eriodictyol protects LPS-triggered oxidative stress, neuroinflammation, and synaptic dysfunctions partially through MAPKs, NF-κB mediated by ROS, Sirt1, and Nrf2/Keap1 signal pathways, which further supports that eriodictyol is a potentially nutritional preventive strategy for oxidative stress-related neurodegenerative diseases.  相似文献   

9.
Reactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging. Paradoxically, accumulating evidence indicates that ROS also serve as critical signaling molecules in cell proliferation and survival. While there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." Cellular ROS sensing and metabolism are tightly regulated by a variety of proteins involved in the redox (reduction/oxidation) mechanism. This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases, PI3 kinase, PTEN, and protein tyrosine phosphatases), ROS homeostasis and antioxidant gene regulation (thioredoxin, peroxiredoxin, Ref-1, and Nrf-2), mitochondrial oxidative stress, apoptosis, and aging (p66Shc), iron homeostasis through iron-sulfur cluster proteins (IRE-IRP), and ATM-regulated DNA damage response.  相似文献   

10.
Among putative downstream synaptic targets of β-amyloid (Aβ) are signaling molecules involved in synaptic function, memory formation and cognition, such as the MAP kinases, MKPs, CaMKII, CREB, Fyn, and Tau. Here, we assessed the activation and interaction of signaling pathways upon prolonged exposure to Aβ in model nerve cells expressing nicotinic acetylcholine receptors (nAChRs). Our goal was to characterize the steps underlying sensitization of the nerve cells to neurotoxicity when Aβ-target receptors are present. Of particular focus was the connection of the activated signaling molecules to oxidative stress. Differentiated neuroblastoma cells expressing mouse α4β2-nAChRs were exposed to Aβ1–42 for intervals from 30 min to 3 days. The cells and cell-derived protein extracts were then probed for activation of signaling pathway molecules (ERK, JNK, CaMKII, CREB, MARCKS, Fyn, tau). Our results show substantial, progressive activation of ERK in response to nanomolar Aβ exposure, starting at the earliest time point. Increased ERK activation was followed by JNK activation as well as an increased expression of PHF-tau, paralleled by increased levels of reactive oxygen species (ROS). The impact of prolonged Aβ on the levels of pERK, pJNK, and ROS was attenuated by MEK-selective and JNK-selective inhibitors. In addition, the MEK inhibitor as well as a JNK inhibitor attenuated Aβ-induced nuclear fragmentation, which followed the changes in ROS levels. These results demonstrate that the presence of nAChRs sensitizes neurons to the neurotoxic action of Aβ through the timed activation of discrete intracellular signaling molecules, suggesting pathways involved in the early stages of Alzheimer disease.  相似文献   

11.
BackgroundDoxorubicin (DOX) is a widely used antitumor drug. However, its clinical application is limited for its serious cardiotoxicity. The mechanism of DOX-induced cardiotoxicity is attributed to the increasing of cell stress in cardiomyocytes, then following autophagic and apoptotic responses. Our previous studies have demonstrated the protective effect of Shenmai injection (SMI) on DOX-induced cardiotoxicity via regulation of inflammatory mediators for releasing cell stress.PurposeTo further investigate whether SMI attenuates the DOX-induced cell stress in cardiomyocytes, we explored the mechanism underlying cell stress as related to Jun N-terminal kinase (JNK) activity and the regulation of autophagic flux to determine the mechanism by which SMI antagonizes DOX-induced cardiotoxicity.Study designThe DOX-induced cardiotoxicity model of autophagic cell death was established in vitro to disclose the protected effects of SMI on oxidative stress, autophagic flux and JNK signaling pathway. Then the autophagic mechanism of SMI antagonizing DOX cardiotoxicity was validated in vivo.ResultsSMI was able to reduce the DOX-induced cardiomyocyte apoptosis associated with inhibition of activation of the JNK pathway and the accumulation of reactive oxygen species (ROS). Besides, SMI antagonized DOX cardiotoxicity, regulated cardiomyocytes homeostasis by restoring DOX-induced cardiomyocytes autophagy. Under specific circumstances, SMI depressed autophagic process by reducing the Beclin 1-Bcl-2 complex dissociation which was activated by DOX via stimulating the JNK signaling pathway. At the same time, SMI regulated lysosomal pH to restore the autophagic flux which was blocked by DOX in cardiomyocytes.ConclusionSMI regulates cardiomyocytes apoptosis and autophagy by controlling JNK signaling pathway, blocking DOX-induced apoptotic pathway and autophagy formation. SMI was also found to play a key role in restoring autophagic flux for counteracting DOX-damaged cardiomyocyte homeostasis.  相似文献   

12.
13.
14.
15.
16.
Inflammation has been linked to multiple degenerative and acute diseases as well as the aging process. Moreover, mitochondrial alterations play a central role in these processes. Mitochondria have an important role in pro-inflammatory signaling; similarly, pro-inflammatory mediators may also alter mitochondrial function. Both of these processes increase mitochondrial oxidative stress, promoting a vicious inflammatory cycle. Additionally, damage-associated molecular patterns derived from mitochondria could contribute to inflammasome formation and caspase-1 activation, while alterations in mitochondrial autophagy may cause inflammation. Strategies aimed at controlling excessive oxidative stress within mitochondria may represent both preventive and therapeutic interventions in inflammation.  相似文献   

17.
Oxidative stress in microbial cells shares many similarities with other cell types but it has its specific features which may differe in prokaryotic and eukaryotic cells. We survey here the properties and actions of primary sources of oxidative stress, the role of transition metals in oxidative stress and cell protective machinery of microbial cells, and compare them with analogous features of other cell types. Other features to be compared are the action of reactive oxygen species (ROS) on cell constituents, secondary lipid-or protein-based radicals and other stress products. Repair of oxidative injury by microorganisms and proteolytic removal of irreparable cell constituents are briefly described. Oxidative damage of aerobically growing microbial cells by endogenously formed ROS mostly does not induce changes similar to the aging of multiplying mammalian cells. Rapid growth of bacteria and yeast prevents accumulation of impaired macromolecules which are repaired, diluted or eliminated. During growth some simple fungi, such as yeast orPodospora spp., exhibit aging whose primary cause seems to be fragmentation of the nucleolus or impairment of mitochondrial DNA integrity. Yeast cell aging seems to be accelerated by endogenous oxidative stress. Unlike most growing microbial cells, stationaryphase cells gradually lose their viability because of a continuous oxidative stress, in spite of an increased synthesis of antioxidant enzymes. Unlike in most microorganisms, in plant and animal cells a severe oxidative stress induces a specific programmed death pathway-apoptosis. The scant data on the microbial death mechanisms induced by oxidative stress indicate that in bacteria cell death can result from activation of autolytic enzymes (similarly to the programmed mother-cell death at the end of bacillar sporulation). Yeast and other simple eukaryotes contain components of a proapoptotic pathway which are silent under normal conditions but can be activated by oxidative stress or by manifestation of mammalian death genes, such asbak orbax. Other aspects, such as regulation of oxidative-stress response, role of defense enzymes and their control, acquisition of stress tolerance, stress signaling and its role in stress response, as well as cross-talk between different stress factors, will be the subject of a subsequent review.  相似文献   

18.
19.
The fundamental mechanisms that underlie platelet activation in atherothrombosis are still obscure. Oxidative stress is involved in central features of atherosclerosis. Platelet-derived microvesicles (PMVs) could be important mediators between oxidative stress and platelet activation. CD36 could be a receptor of PMVs, thus generating a PMV–CD36 complex. We aimed to investigate the detailed pathway by which oxidative damage contributes to platelet activation by the PMV–CD36 complex. We found that oxidized low-density lipoprotein stimulated the generation of PMVs. PMVs enhanced normal platelet activation, as assessed by the expression of integrin αIIbβ3, secretion of soluble P-selectin and platelet aggregation, but CD36-deficient platelets were not activated by PMVs. The function of the PMV–CD36 complex was mediated by the MKK4/JNK2 signaling axis. Meanwhile, PMVs increased the level of 8-iso-prostaglandin-F2α, a marker of oxidative stress, in a CD36- and phosphatidylserine-dependent manner. We concluded that PMVs are important mediators between oxidative stress and platelet activation. PMVs and CD36 may be effective targets for preventing platelet activation in cardiovascular diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号