共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell cycle (Georgetown, Tex.)》2013,12(1):70-73
Oncogenic RAS mutants such as v-Ha-RAS induce cell cycling, in particular the G1 to S transition, by up-regulating cyclin D1 and down-regulating p27, an inhibitor for cyclin-dependent kinases (CDKs). PI-3 kinase appears to be involved in the regulation of both cyclin D1 and p27. In this report, using two distinct inhibitors specific for PAK1-3 (CEP-1347 and WR-PAK18), we present the first evidence indicating that the PIX/Rac/CDC42-dependent Ser/Thr kinases PAK1-3, acting downstream of PI-3 kinase and up-stream of the Raf/MEK/ERKs kinase cascade, is essential for RAS-induced up-regulation of cyclin D1, but not down-regulation of p27. Since these PAK-inhibitors block selectively the malignant growth of RAS transformants, in which PAK1 is constitutively activated, but not normal cell growth, it is suggested that RAS transformants are addicted to the high levels of PAK1 for their malignant entry to S phase. 相似文献
2.
3.
4.
Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. 总被引:39,自引:0,他引:39 下载免费PDF全文
M Ohtsubo A M Theodoras J Schumacher J M Roberts M Pagano 《Molecular and cellular biology》1995,15(5):2612-2624
Cyclin E was first identified by screening human cDNA libraries for genes that would complement G1 cyclin mutations in Saccharomyces cerevisiae and has subsequently been found to have specific biochemical and physiological properties that are consistent with it performing a G1 function in mammalian cells. Most significantly, the cyclin E-Cdk2 complex is maximally active at the G1/S transition, and overexpression of cyclin E decreases the time it takes the cell to complete G1 and enter S phase. We have now found that mammalian cells express two forms of cyclin E protein which differ from each other by the presence or absence of a 15-amino-acid amino-terminal domain. These proteins are encoded by alternatively spliced mRNAs and are localized to the nucleus during late G1 and early S phase. Fibroblasts engineered to constitutively overexpress either form of cyclin E showed elevated cyclin E-dependent kinase activity and a shortened G1 phase of the cell cycle. The overexpressed cyclin E protein was detected in the nucleus during all cell cycle phases, including G0. Although the cyclin E protein could be overexpressed in quiescent cells, the cyclin E-Cdk2 complex was inactive. It was not activated until 6 to 8 h after readdition of serum, 4 h earlier than the endogenous cyclin E-Cdk2. This premature activation of cyclin E-Cdk2 was consistent with the extent of G1 shortening caused by cyclin E overexpression. Microinjection of affinity-purified anti-cyclin E antibodies during G1 inhibited entry into S phase, whereas microinjection performed near the G1/S transition was ineffective. These results demonstrate that cyclin E is necessary for entry into S phase. Moreover, we found that cyclin E, in contrast to cyclin D1, was required for the G1/S transition even in cells lacking retinoblastoma protein function. Therefore, cyclins E and D1 control two different transitions within the human cell cycle. 相似文献
5.
The influence of zinc (Zn) availability on thymidine kinase mRNA concentration has been investigated in cells in which production of the mRNA was regulated by either truncated thymidine kinase promoters or by the SV40 early promoter. Thymidine kinase mRNA concentrations were decreased by low Zn availability even when the promoter was truncated to 80 bp but not when it was replaced by the SV40 promoter. However, thymidine incorporation by the SV40 cells was still sensitive to lack of Zn, suggesting a second Zn-sensitive process involved in commitment to S phase. The increase in histone H3 mRNA production prior to S phase was not inhibited by lack of Zn leading to a preferential increase in this mRNA in exponentially growing cells deprived of Zn. © 1993 Wiley-Liss, Inc. 相似文献
6.
Qi Y Tu Y Yang D Chen Q Xiao J Chen Y Fu J Xiao X Zhou Z 《Journal of cellular physiology》2007,210(1):63-71
The proto-oncogene c-myc is a key player in cell-cycle regulation and is deregulated in a broad range of human cancers and cell proliferation disorders. Here we reported that overexpression of c-myc in human embryonic lung fibroblasts (HEL) that have low endogenous c-myc enriched S phase cells with increased expression of cyclin D3, E, A, Cdk2, and Cdk4, and decreased expression of p21 and p27. To the opposite, using RNAi to downregulate c-myc expression in A549 cells that have high endogenous c-myc enriched G1 phase cells with decreased expression of cyclin D3, E, A, Cdk2, Cdk4, and increased expression of p21 and p27. We found that cyclin A expression was the most susceptive to changes in c-myc levels and essential in c-myc-modulated cell cycle pathway via co-transfection, however, cyclin D1 showed no change between treated and control groups in either HEL or A549 cells. Our results indicated that upregulation of c-myc expression promotes cell cycling in HEL cells, whereas downregulation of c-myc expression causes G1 phase arrest in A549 cells, and the c-myc-mediated cell-cycle regulation pathway was dependent on cyclin A and involved cyclin D3, E, Cdk2, Cdk4, p21, and p27, but not cyclin D1. 相似文献
7.
The control of cell cycle progression has been studied in asynchronous cultures using image analysis and time lapse techniques. This approach allows determination of the cycle phase and signaling properties of individual cells, and avoids the need for synchronization. In past studies this approach demonstrated that continuous cell cycle progression requires the induction of cyclin D1 levels by Ras, and that this induction takes place during G2 phase. These studies were designed to understand how Ras could induce cyclin D1 levels only during G2 phase. First, in studies with a Ras-specific promoter and cellular migration we find that endogenous Ras is active in all cell cycle phases of actively cycling NIH3T3 cells. This suggests that cyclin D1 induction during G2 phase is not the result of Ras activation specifically during this cell cycle period. To confirm this suggestion oncogenic Ras, which is expected to be active in all cell cycle phases, was microinjected into asynchronous cells. The injected protein induced cyclin D1 levels rapidly, but only in G2 phase cells. We conclude that in the continuously cycling cell the targets of Ras activity are controlled by cell cycle phase, and that this phenomenon is vital to cell cycle progression. 相似文献
8.
David J. M. Fuller Eugene W. Gerner Diane Haddock Russell 《Journal of cellular physiology》1977,93(1):81-88
Ornithine decarboxylase, an important enzyme in growth regulation, is increased in CHO cells in G1 phase of the cell cycle and decreases as the cells progress into S phase. S-adenosyl-L-methionine decarboxylase activity, which is dependent on either the presence of putrescine or spermidine for the synthesis of spermidine and spermine respectively, shows a maximal increase in late G1/early S phase which corresponds very closely with the cell cycle phase specific accumulation of spermidine and spermine during S phase. Total culture evaluation of spermidine and spermine, which included extracellular as well as intracellular concentrations, indicated that extracellular accumulations of these polyamines occurred only in G1 and that entry into S phase was concomitant with intracellular accumulation patterns. Hyperthermia (43°C for 1 hour) in mid-G1 phase of the cell cycle resulted in rapid decreases in the activities of ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase. In these cells, DNA replication was also not detectable until nine hours after mitosis, a time at which there had been recovery of ornithine decarboxylase and S-adenosyl-L-methionine decarboxylase activities. Previous data have further indicated a requirement for polyamine reaccumulation before control DNA replication rates are resumed. We therefore suggest that polyamine biosynthesis and intracellular accumulation are both temporal and quantitative prerequisites for transition through S phase. 相似文献
9.
The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis 总被引:11,自引:0,他引:11 下载免费PDF全文
The G1-to-S-phase transition is a key regulatory point in the cell cycle, but the rate-limiting component in plants is unknown. Overexpression of CYCLIN D3;1 (CYCD3;1) in transgenic plants increases mitotic cycles and reduces endocycles, but its effects on cell cycle progression cannot be unambiguously determined. To analyze the cell cycle roles of plant D-type cyclins, we overexpressed CYCD3;1 in Arabidopsis thaliana cell suspension cultures. Changes in cell number and doubling time were insignificant, but cultures exhibited an increased proportion of G2- over G1-phase cells, as well as increased G2 arrest in response to stationary phase and sucrose starvation. Synchronized cultures confirm that CYCD3;1-expressing (but not CYCD2;1-expressing) cells show increased G2-phase length and delayed activation of mitotic genes such as B-type cyclins, suggesting that CYCD3;1 has a specific G1/S role. Analysis of putative cyclin-dependent kinase phosphorylation sites within CYCD3;1 shows that mutating Ser-343 to Ala enhances CYCD3;1 potency without affecting its rate of turnover and results in a fivefold increase in the level of cell death in response to sucrose removal. We conclude that CYCD3;1 dominantly drives the G1/S transition, and in sucrose-depleted cells the decline in CYCD3;1 levels leads to G1 arrest, which is overcome by ectopic CYCD3;1 expression. Ser-343 is likely a key residue in modulating CYCD3;1 activity in response to sucrose depletion. 相似文献
10.
C Desdouets G H Thoresen C Senamaud-Beaufort T Christoffersen C Brechot J Sobczak-Thepot 《Biochemical and biophysical research communications》1999,261(1):118-122
cAMP positively and negatively regulates hepatocyte proliferation but its molecular targets are still unknown. Cyclin A2 is a major regulator of the cell cycle progression and its synthesis is required for progression to S phase. We have investigated whether cyclin A2 and cyclin A2-associated kinase might be one of the targets for the cAMP transduction pathway during progression of hepatocytes through G1 and G1/S. We show that stimulation of primary cultured hepatocytes by glucagon differentially modulated the expression of G1/S cyclins. Glucagon indeed upregulated cyclin A2 and cyclin A2-associated kinase while cyclin E-associated kinase was unmodified. In conclusion, our study identifies cyclin A2 as an important effector of the cAMP transduction network during hepatocyte proliferation. 相似文献
11.
Nicotine, a major component in tobacco, has been implicated as a potential factor that promotes the development of lung cancer. However, the molecular mechanism of its action is still unclear. In this study, we have shown that, via nicotinic acetylcholine receptors, persistent exposure of mouse epithelial cells to nicotine elicits Ras signaling and subsequent Raf/MAP kinase activity, accompanied by a significant increase in cyclin D1 promoter activity and its protein expression. AP-1 is required for activation of the cyclin D1 promoter. The induction of cyclin D1 expression and its promoter activity by nicotine is abolished by the suppression of Raf/MAP kinase signaling. Furthermore, upon nicotine treatment, the cells do not arrest in the G(1) phase of the cell cycle following serum starvation. The perturbation of the G(1) cell cycle checkpoint is caused by the deregulation of retinoblastoma/E2F activity. Therefore, our data indicated that by targeting the Ras pathway, long-term exposure to nicotine disrupts cell cycle restriction machinery and thus potentiates tumor development. 相似文献
12.
During development, patterning and morphogenesis of tissues are intimately coordinated through control of cellular proliferation and differentiation. We describe a mechanism by which vertebrate Msx homeobox genes inhibit cellular differentiation by regulation of the cell cycle. We show that misexpression of Msx1 via retroviral gene transfer inhibits differentiation of multiple mesenchymal and epithelial progenitor cell types in culture. This activity of Msx1 is associated with its ability to upregulate cyclin D1 expression and Cdk4 activity, while Msx1 has minimal effects on cellular proliferation. Transgenic mice that express Msx1 under the control of the mouse mammary tumor virus long terminal repeat (MMTV LTR) display impaired differentiation of the mammary epithelium during pregnancy, which is accompanied by elevated levels of cyclin D1 expression. We propose that Msx1 gene expression maintains cyclin D1 expression and prevents exit from the cell cycle, thereby inhibiting terminal differentiation of progenitor cells. Our model provides a framework for reconciling the mutant phenotypes of Msx and other homeobox genes with their functions as regulators of cellular proliferation and differentiation during embryogenesis. 相似文献
13.
Jeon Y Lee KY Ko MJ Lee YS Kang S Hwang DS 《The Journal of biological chemistry》2007,282(20):14882-14890
Human TopBP1 with eight BRCA1 C terminus domains has been mainly reported to be involved in DNA damage response pathways. Here we show that TopBP1 is also required for G(1) to S progression in a normal cell cycle. TopBP1 deficiency inhibited cells from entering S phase by up-regulating p21 and p27, resulting in down-regulation of cyclin E/CDK2. Although co-depletion of p21 and p27 with TopBP1 restored the cyclin E/CDK2 kinase activity, however, cells remained arrested at the G(1)/S boundary, showing defective chromatin-loading of replication components. Based on these results, we suggest a dual role of TopBP1 necessary for the G(1)/S transition: one for activating cyclin E/CDK2 kinase and the other for loading replication components onto chromatin to initiate DNA synthesis. 相似文献
14.
15.
16.
Bernardin-Fried F Kummalue T Leijen S Collector MI Ravid K Friedman AD 《The Journal of biological chemistry》2004,279(15):15678-15687
AML1/RUNX1, a member of the core binding factor (CBF) family stimulates myelopoiesis and lymphopoiesis by activating lineage-specific genes. In addition, AML1 induces S phase entry in 32Dcl3 myeloid or Ba/F3 lymphoid cells via transactivation. We now found that AML1 levels are regulated during the cell cycle. 32Dcl3 and Ba/F3 cell cycle fractions were prepared using elutriation. Western blotting and a gel shift/supershift assay demonstrated that endogenous CBF DNA binding and AML1 levels were increased 2-4-fold in S and G(2)/M phase cells compared with G(1) cells. In addition, G(1) arrest induced by mimosine reduced AML1 protein levels. In contrast, AML1 RNA did not vary during cell cycle progression relative to actin RNA. Analysis of exogenous Myc-AML1 or AML1-ER demonstrated a significant reduction in G(1) phase cells, whereas levels of exogenous DNA binding domain alone were constant, lending support to the conclusion that regulation of AML1 protein stability contributes to cell cycle variation in endogenous AML1. However, cytokine-dependent AML1 phosphorylation was independent of cell cycle phase, and an AML1 mutant lacking two ERK phosphorylation sites was still cell cycle-regulated. Inhibition of AML1 activity with the CBFbeta-SMMHC or AML1-ETO oncoproteins reduced cyclin D3 RNA expression, and AML1 bound and activated the cyclin D3 promoter. Signals stimulating G(1) to S cell cycle progression or entry into the cell cycle in immature hematopoietic cells might do so in part by inducing AML1 expression, and mutations altering pathways regulating variation in AML1 stability potentially contribute to leukemic transformation. 相似文献
17.
DG Crider LJ García-Rodríguez P Srivastava L Peraza-Reyes K Upadhyaya IR Boldogh LA Pon 《The Journal of cell biology》2012,198(5):793-798
The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho(0) cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F(1)F(0) adenosine triphosphatase, or replacement of all mtDNA-encoded genes with noncoding DNA did not affect G1- to S-phase progression. Thus, the cell cycle progression defect in rho(0) cells is caused by loss of DNA within mitochondria and not loss of respiratory activity or mtDNA-encoded genes. Rad53p, the yeast Chk2 homologue, was required for inhibition of G1- to S-phase progression in rho(0) cells. Pif1p, a DNA helicase and Rad53p target, underwent Rad53p-dependent phosphorylation in rho(0) cells. Thus, loss of mtDNA activated an established checkpoint kinase that inhibited G1- to S-phase progression. These findings support the existence of a Rad53p-regulated checkpoint that regulates G1- to S-phase progression in response to loss of mtDNA. 相似文献
18.
Phosphorylation of retinoblastoma-related protein by the cyclin D/cyclin-dependent kinase complex is activated at the G1/S-phase transition in tobacco 下载免费PDF全文
In mammals, D-type cyclin-associated kinases mainly regulate the G1/S transition by phosphorylating the retinoblastoma (Rb) protein. We previously demonstrated that in tobacco, cyclin D (Nicta; CycD3;3) is complexed with the PSTAIRE-containing cyclin-dependent kinase (CDKA) from tobacco. Here, we show that Nicta; CycD3;3-associated kinases phosphorylate both the tobacco Rb-related protein (NtRb1) and histone H1. Although NtRb1 kinase activity was detected only during the middle G1- to early S-phase, histone H1 kinase activity was observed as two peaks in G1- to S-phase and G2/M- to M-phase. Importantly, we show that the proportion of cells in the G1-phase was reduced in transgenic Bright Yellow-2 cells overexpressing Nicta; CycD3;3-GFP. Mutational analyses revealed that phosphorylation of Thr-191 in Nicta; CycD3;3 possibly is required for both full kinase activity and localization predominantly to the nucleus. These data suggest that Nicta; CycD3;3 acts as a rate-limiting regulator in the G1/S transition by forming active complexes with CDKA or its related kinases to phosphorylate Rb-related protein and potentially plays a novel role during G2/M and mitosis. 相似文献
19.
Previous work with yeast cells and with Xenopus egg extracts had shown that eukaryotic pre-replication complexes assemble on chromatin in a step-wise manner whereby specific loading factors promote the recruitment of essential Mcm proteins at pre-bound origin recognition complexes (ORC with proteins Orc1p–Orc6p). While the order of assembly—Mcm binding follows ORC binding—seems to be conserved in cycling mammalian cells in culture, it has not been determined whether mammalian Mcm proteins associate with ORC-bearing chromatin sites. We have used a chromatin immunoprecipitation approach to investigate the site of Mcm binding in a genomic region that has previously been shown to contain an ORC-binding site and an origin of replication. Using chromatin from HeLa cells in G1 phase, antibodies against Orc2p as well as antibodies against Mcm proteins specifically immunoprecipitate chromatin enriched for a DNA region that includes a replication origin. However, with chromatin from cells in S phase, only Orc2p-specific antibodies immunoprecipitate the origin-containing DNA region while Mcm-specific antibodies immunoprecipitate chromatin with DNA from all parts of the genomic region investigated. Thus, human Mcm proteins first assemble at or adjacent to bound ORC and move to other sites during genome replication. 相似文献