首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared the baroreflex control of lumbar and renal sympathetic nerve activity (SNA) in conscious rats. Arterial pressure (AP) and lumbar and renal SNA were simultaneously recorded in six freely behaving rats. Pharmacological estimates of lumbar and renal sympathetic baroreflex sensitivity (BRS) were obtained by means of the sequential intravenous administration of sodium nitroprusside and phenylephrine. Sympathetic BRS was significantly (P < 0.05) lower for lumbar [3.0 +/- 0.4 normalized units (NU)/mmHg] than for renal (7.6 +/- 0.6 NU/mmHg) SNA. During a 219-min baseline period, spontaneous lumbar and renal BRS were continuously assessed by computing the gain of the transfer function relating AP and SNA at heart rate frequency over consecutive 61.4-s periods. The transfer gain was considered only when coherence between AP and SNA significantly differed from zero, which was verified in 99 +/- 1 and 96 +/- 3% of cases for lumbar and renal SNA, respectively. When averaged over the entire baseline period, spontaneous BRS was significantly (P < 0.05) lower for lumbar (1.3 +/- 0.2 NU/mmHg) than for renal (2.3 +/- 0.3 NU/mmHg) SNA. For both SNAs, spontaneous BRS showed marked fluctuations (variation coefficients were 26 +/- 2 and 28 +/- 2% for lumbar and renal SNA, respectively). These fluctuations were positively correlated in five of six rats (R = 0.44 +/- 0.06; n = 204 +/- 8; P < 0.0001). We conclude that in conscious rats, the baroreflex control of lumbar and renal SNA shows quantitative differences but is modulated in a mostly coordinated way.  相似文献   

2.
3.
The present study examined the effects of baroreceptor loading and unloading on the various rhythms present in the renal sympathetic nerve activity (RSNA) of 10 conscious rats. Short-lasting (4-5 min), steady-state decreases (from -10 to -40 mmHg) and increases (from 5 to 30 mmHg) in arterial pressure (AP) were induced by the intravenous infusion of sodium nitroprusside and phenylephrine, respectively. The relationship between changes in AP level and RSNA total power (fast Fourier transform analysis; 0-25 Hz) was characterized by an inverse sigmoid function. Basal AP was located 6.3 mmHg above AP at the midrange of the curve, that is, near the lower plateau. Sigmoid relationships were also observed for spectral powers in the low (LF, 0.030-0.244 Hz), respiratory (0.79-2.5 Hz) and high-frequency (HF, 2.5-25 Hz) bands. In contrast, in the MF band (0.27-0.76 Hz) containing oscillations associated with Mayer waves, the AP-RSNA power relationship showed a bell curve shape with a maximum at 21 mmHg below basal AP. Similarly, changes in RSNA power at the frequency of the heart beat were well characterized by a bell curve reaching a maximum at 22 mmHg below basal AP. Under baseline conditions, LF, MF, respiratory and HF powers contributed approximately 3, 10, 18, and 69% of the total RSNA power, respectively. The pulse-synchronous oscillation of RSNA accounted for only 11 +/- 1% of HF power. The contribution of HF power to total power did not change consistently with AP changes. Therefore, most of the baroreflex-induced changes in RSNA are mediated by changes in the amplitude of fast, irregular fluctuations.  相似文献   

4.
We have explored the possibility that renal sympathetic nerve activity (RSNA) and vasomotor sympathetic nerve activity are differentially regulated. We measured sympathetic nerve activity (SNA) to the kidney and the hind limb vasculature in seven conscious rabbits 6-8 days after the implantation of recording electrodes. Acute infusion of N(G)-nitro-L-arginine methyl ester (L-NAME) (6 mg.kg(-1).min(-1) for 5 min) led to an increase in blood pressure (from 66 +/- 1 to 82 +/- 3 mmHg) and a decrease in heart rate (from 214 +/- 15 to 160 +/- 13 bpm). L-NAME administration caused a significantly greater decrease in RSNA than lumbar sympathetic nerve activity (LSNA) (to 68 +/- 14% vs. 84 +/- 4% of control values, respectively). Volume expansion (1.5 ml.kg(-1).min(-1)) resulted in a significant decrease in RSNA to 66 +/- 7% of control levels but no change in LSNA (127 +/- 20%). There was no difference in the gain of the baroreflex curves between the LSNA and RSNA [maximum gain of -7.6 +/- 0.4 normalized units (nu)/mmHg for LSNA vs. -7.9 +/- 0.75 nu/mmHg for RSNA]. A hypoxic stimulus (10% O2 and 3% CO2) led to identical increases in both RSNA and LSNA (195 +/- 40% and 158 +/- 21% of control values, respectively). Our results indicate tailored differential control of RSNA and LSNA in response to acute stimuli.  相似文献   

5.
Little is known about baroreflex control of renal nerve sympathetic activity (RSNA) or the effect of angiotensin II (ANG II) on the baroreflex in diabetes. We examined baroreflex control of RSNA and heart rate (HR) in conscious, chronically instrumented rats 2 wk after citrate vehicle (normal) or 55 mg/kg iv streptozotocin (diabetic) before and after losartan (5 mg/kg iv) or enalapril (2.5 mg/kg iv). Resting HR and RSNA were lower in diabetic versus normal rats. The range of baroreflex control of HR and the gain of baroreflex-mediated bradycardia were impaired in diabetic rats. Maximum gain was unchanged. The baroreflex control of RSNA was reset to lower pressures in the diabetic rats but remained otherwise unchanged. Losartan decreased mean arterial pressure (MAP) and increased HR and RSNA in both groups but had no influence on the baroreflex. Enalapril decreased MAP only in normal rats, yet the increase in HR and RSNA was similar in both groups. Thus in diabetic rats enalapril produced a pressure-independent increase in HR and RSNA. Enalapril exerted no effect on the baroreflex control of HR or RSNA in either group. These data indicate that in conscious rats resting RSNA is lower but baroreflex control of RSNA is preserved after 2 wk of diabetes. At this time, the baroreflex control of HR is already impaired and blockade of endogenous ANG II does not improve this dysfunction.  相似文献   

6.
Stellate ganglion blockade (SGB) with a local anesthetic increases muscle sympathetic nerve activity in the tibial nerve in humans. However, whether this sympathetic excitation in the tibial nerve is due to a sympathetic blockade in the neck itself, or due to infiltration of a local anesthetic to adjacent nerves including the vagus nerve remains unknown. To rule out one mechanism, we examined the effects of cervical sympathetic trunk transection on renal sympathetic nerve activity (RSNA) in anesthetized rats. Seven rats were anesthetized with intraperitoneal urethane. RSNA together with arterial blood pressure and heart rate were recorded for 15 min before and 30 min after left cervical sympathetic trunk transection. The baroreceptor unloading RSNA obtained by decreasing arterial blood pressure with administration of sodium nitroprusside was also measured. Left cervical sympathetic trunk transection did not have any significant effects on RSNA, baroreceptor unloading RSNA, arterial blood pressure, and heart rate. These data suggest that there was no compensatory increase in RSNA when cervical sympathetic trunk was transected and that the increase in sympathetic nerve activity in the tibial nerve during SGB in humans may result from infiltration of a local anesthetic to adjacent nerves rather than a sympathetic blockade in the neck itself.  相似文献   

7.
The effects of inhibiting the neural activity in the pontine A5 region on renal sympathetic responses to baroreflex and/or chemoreflex activation were examined in conscious rabbits. Eight rabbits were chronically instrumented with guide cannulas for bilateral microinjections into the A5 area and an electrode for measuring renal sympathetic nerve activity (RSNA). Baroreflex curves were obtained under conditions of normoxia and hypoxia (10% O(2) + 3% CO(2)) after injections into the A5 region of the GABA receptor agonist muscimol or vehicle solution. Under normoxia, injections of muscimol did not affect resting RSNA or blood pressure but increased the range of the RSNA baroreflex by 24 and 33% at doses of 175 or 875 pmol, respectively, without affecting the reflex gain. Hypoxia alone increased resting RSNA by 63%, as well as the range and gain of the RSNA baroreflex by 53 and 89%, respectively, without affecting blood pressure. However, under hypoxia, muscimol increased resting RSNA by 37 and 47% but decreased the gain of the RSNA baroreflex by 19 and 34% at doses of 175 or 875 pmol, respectively, without affecting the reflex range. The effects of muscimol on RSNA were mediated via changes in the amplitude of the sympathetic bursts, whereas burst frequency remained unaffected. These data suggest that the A5 region has a little tonic influence on RSNA in conscious rabbits but serves to limit the renal sympathetic responses to baroreceptor unloading or chemoreceptor stimulation. The different changes in the baroreflex range and gain evoked by muscimol under normoxia and hypoxia indicate that the A5 modulatory action may depend on the activity of the afferent inputs to this region.  相似文献   

8.
It is well known that cardiac sympathetic afferent reflexes contribute to increases in sympathetic outflow and that sympathetic activity can antagonize arterial baroreflex function. In this study, we tested the hypothesis that in normal rats, chemical and electrical stimulation of cardiac sympathetic afferents results in a decrease in the arterial baroreflex function by increasing sympathetic nerve activity. Under alpha-chloralose (40 mg/kg) and urethane (800 mg/kg i.p.) anesthesia, renal sympathetic nerve activity, mean arterial pressure, and heart rate were recorded. The arterial baroreceptor reflex was evaluated by infusion of nitroglycerin (25 microg i.v.) and phenylephrine (10 microg i.v.). Left ventricular epicardial application of capsaicin (0.4 microg in 2 microl) blunted arterial baroreflex function by 46% (maximum slope 3.5 +/- 0.3 to 1.9 +/- 0.2%/mmHg, P < 0.01). When the central end of the left cardiac sympathetic nerve was electrically stimulated (7 V, 1 ms, 20 Hz), the sensitivity of the arterial baroreflex was similarly decreased by 42% (maximum slope 3.2 +/- 0.3 to 1.9 +/- 0.4%/mmHg; P < 0.05). Pretreatment with intracerebroventricular injection of losartan (500 nmol in 1 microl of artificial cerebrospinal fluid) completely prevented the impairment of arterial baroreflex function induced by electrical stimulation of the central end of the left cardiac sympathetic nerve (maximum slope 3.6 +/- 0.4 to 3.1 +/- 0.5%/mmHg). These results suggest that the both chemical and electrical stimulation of the cardiac sympathetic afferents reduces arterial baroreflex sensitivity and the impairment of arterial baroreflex function induced by cardiac sympathetic afferent stimulation is mediated by central angiotensin type 1 receptors.  相似文献   

9.
Adiponectin is an adipocytokine that modulates energy homeostasis and glucose metabolism. Here, we examined the effects of acute intravenous (iv) and lateral cerebral ventricular (LCV) injections of adiponectin on the renal sympathetic nerve activity (RSNA) and blood pressure (b/p) in urethane-anesthetized rats. Both iv and LCV injections of adiponectin induced dose-dependent suppressions of RSNA and b/p. Moreover, we found that bilateral lesions of the hypothalamic suprachiasmatic nucleus (SCN) abolished the effects of iv injection of adiponectin on RSNA and b/p. These findings suggest that adiponectin decreases the RSNA and b/p in a dose-dependent manner and that the SCN is implicated in mechanism of adiponectin actions on RSNA and b/p. These findings also suggest that the hypotensive-action activity of adiponectin is realized, at least partially, via changes in activities of autonomic nerves activity.  相似文献   

10.
Despite its usefulness as a nongenetic model of hypertension, little information is available regarding baroreflex function in the Grollman, renal wrap model of hypertension in the rat. Baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) were studied in male, Sprague-Dawley rats hypertensive (HT) for 1 or 4-6 wk after unilateral nephrectomy and figure-8 ligature around the remaining kidney or normotensive (NT) after sham surgery. Rats were anesthetized with Inactin and RSNA, and HR was recorded during intravenous infusions of sodium nitroprusside or phenylephrine to lower or raise mean arterial pressure (MAP). Response curves were analyzed using a logistic sigmoid function. In 1- and 4-wk HT rats the midpoints of RSNA and HR reflex curves were shifted to the right (P < 0.05). Comparing NT to 1- or 4-wk HT rats, the gain of RSNA-MAP curves was no different; however, gain was reduced in the HR-MAP curves at both 1 and 4 wk in HT rats (P < 0.05). In anesthetized rats the HR range was small; therefore, MAP and HR were measured in conscious rats during intravenous injections of three doses of phenylephrine and three doses of sodium nitroprusside. Linear regressions revealed a reduced slope in both 1- and 4-wk HT rats compared with NT rats (P < 0.05). The results indicate that baroreflex curves are shifted to the right, to higher pressures, in hypertension. After 1-4 wk of hypertension the gain of baroreflex regulation of RSNA is not altered; however, the gain of HR regulation is reduced.  相似文献   

11.
The effects of acute emotional stress on the sympathetic component of the arterial baroreceptor reflex have not yet been described in conscious animals and humans. Arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were simultaneously recorded in 11 conscious rats before and during exposure to a mild environmental stressor (jet of air). Baroreflex function curves relating AP and RSNA were constructed by fitting a sigmoid function to RSNA and AP measured during sequential nitroprusside and phenylephrine administrations. Stress increased mean AP from 112 +/- 2 to 124 +/- 2 mmHg, heart rate from 381 +/- 10 to 438 +/- 18 beats/min, and RSNA from 0.80 +/- 0.14 to 1.49 +/- 0.23 microV. The RSNA-AP relationship was shifted toward higher AP values, and its maximum gain was significantly (P < 0.01) increased from 9.0 +/- 1.3 to 16.2 +/- 2.1 normalized units (NU)/mmHg. The latter effect was secondary to an increase (P < 0.01) in the range of the RSNA variation from 285 +/- 33 to 619 +/- 59 NU. In addition, the operating range of the reflex was increased (P < 0.01) from 34 +/- 2 to 41 +/- 3 mmHg. The present study indicates that in rats, the baroreflex control of RSNA is sensitized and operates over a larger range during emotional stress, which suggests that renal vascular tone, and possibly AP, are very efficiently controlled by the sympathetic nervous system under this condition.  相似文献   

12.
The purpose of the present study was to determine the relationship between renal sympathetic nerve activity (RSNA) and renal blood flow (RBF) during normal daily activity in conscious, chronically instrumented Wistar rats (n = 8). The animal's behavior was classified as rapid eye movement (REM) sleep, non-REM (NREM) sleep, quiet awake, moving, and grooming states. On average RSNA was lowest during REM sleep, which was decreased by 39.0 +/- 3.2% (P < 0.05) relative to NREM sleep, and rose linearly with an increase in activity level in the order of quiet awake (by 10.9 +/- 1.8%, P < 0.05), moving (by 29.4 +/- 2.9%, P < 0.05), and grooming (by 65.3 +/- 3.9%, P < 0.05) relative to NREM sleep. By contrast, RBF was highest during REM sleep, which was increased by 4.8 +/- 0.7% (P < 0.05) relative to NREM sleep and decreased significantly (P < 0.05) by 5.5 +/- 0.6 and 6.6 +/- 0.5% during moving and grooming states, respectively, relative to NREM sleep. There was a significant (P < 0.05) inverse linear relationship between the percent changes in RSNA and RBF and between those in RSNA and renal vascular conductance. Furthermore, renal denervation (n = 8) abolished the changes in RBF induced by different natural behavioral activities. These results suggest that the changes in RSNA induced by natural behavioral activities had a significant influence on RBF.  相似文献   

13.
Angiotensin II (ANG II) has complex actions on the cardiovascular system. ANG II may act to increase sympathetic vasomotor outflow, but acutely the sympathoexcitatory actions of exogenous ANG II may be opposed by ANG II-induced increases in arterial pressure (AP), evoking baroreceptor-mediated decreases in sympathetic nerve activity (SNA). To examine this hypothesis, the effect of ANG II infusion on lumbar SNA was measured in unanesthetized chronic sinoaortic-denervated rats. Chronic sinoaortic-denervated rats had no reflex heart rate (HR) responses to pharmacologically evoked increases or decreases in AP. Similarly, in these denervated rats, nitroprusside-induced hypotension had no effect on lumbar SNA; however, phenylephrine-induced increases in AP were still associated with transient decreases in SNA. In control rats, infusion of ANG II (100 ng x kg(-1) x min(-1) iv) increased AP and decreased HR and SNA. In contrast, ANG II infusion increased lumbar SNA and HR in sinoaortic-denervated rats. In rats that underwent sinoaortic denervation surgery but still had residual baroreceptor reflex-evoked changes in HR, the effect of ANG II on HR and SNA was variable and correlated to the extent of baroreceptor reflex impairment. The present data suggest that pressor concentrations of ANG II in rats act rapidly to increase lumbar SNA and HR, although baroreceptor reflexes normally mask these effects of ANG II. Furthermore, these studies highlight the importance of fully characterizing sinoaortic-denervated rats used in experiments examining the role of baroreceptor reflexes.  相似文献   

14.
The relationship between renal sympathetic nerve activity (RSNA) and systemic arterial pressure obtained during rapid eye movement (REM) sleep was compared with that obtained in other sleep and awake states. Electrodes for the measurements of RSNA, electrocardiogram, electromyogram, and electroencephalogram and a catheter for the measurement of systemic arterial pressure were implanted while the animals were under aseptic conditions at least 5 days before the experiment. During the transition from non-REM (NREM) to REM sleep, RSNA and heart rate (HR) decreased immediately by 46 +/- 2% (P < 0.05) and 22 +/- 3 beats/min (P < 0.05), respectively, over 3 s after the onset of REM sleep. Meanwhile, systemic arterial pressure increased gradually after the onset of REM sleep, which was apparently independent of the changes in RSNA. During REM sleep, the relationships between RSNA/HR and systemic arterial pressure were dissociated compared with that obtained during the other behavioral states. These data indicate that the interdependency between systemic arterial pressure and RSNA during REM sleep is likely to be modified compared with other behavioral states.  相似文献   

15.
The effect of angiotensin II (AII) on systemic and regional haemodynamics was studied in 18 control and 18 cirrhotic, non-ascitic conscious rats (CCl4/phenobarbital model). Cirrhotic rats were found to retain sodium and to have normal plasma renin and plasma aldosterone concentrations when compared with control animals. Cirrhotic rats showed an enhanced cardiac output (34.4 +/- 0.5 vs. 27.5 +/- 2.0 ml/min in controls) and decreased peripheral resistances (2.96 +/- 0.25 vs. 3.95 +/- 0.31 mm Hg/min/100 g/ml in controls) under basal conditions. When AII was administered cardiac output decreased by 10.7 +/- 1.2% in cirrhotic rats, whereas it increased in control animals (11.2 +/- 2%, p less than 0.005). The AII-induced increase in arterial pressure was lower in cirrhotic than in control rats. The renal blood supply was particularly impaired by AII in cirrhotics, with a maintained flow to other organs (muscle, testes). It is concluded that the response to AII is disturbed in rats with hepatic cirrhosis even in a stage without ascites and with plasma renin and aldosterone concentrations similar to those of control animals.  相似文献   

16.
We examined whether adrenomedullin, a vasoactive peptide expressed in the heart, modulates the increase in blood pressure, changes in systolic and diastolic function, and left ventricular hypertrophy produced by long-term administration of ANG II or norepinephrine in rats. Subcutaneous administration of adrenomedullin (1.5 microg.kg(-1).h(-1)) for 1 wk inhibited the ANG II-induced (33.3 microg.kg(-1).h(-1) sc) increase in mean arterial pressure by 67% (P < 0.001) but had no effect of norepinephrine-induced (300 microg.kg(-1).h(-1) sc) hypertension. Adrenomedullin enhanced the ANG II-induced improvement in systolic function, resulting in a further 9% increase (P < 0.01) in the left ventricular ejection fraction and 19% increase (P < 0.05) in the left ventricular fractional shortening measured by echocardiography, meanwhile norepinephrine-induced changes in systolic function were remained unaffected. Adrenomedullin had no effect on ANG II- or norepinephrine-induced left ventricular hypertrophy or expression of hypertrophy-associated genes, including contractile protein and natriuretic peptide genes. The present study shows that adrenomedullin selectively suppressed the increase in blood pressure and augmented the improvement of systolic function induced by ANG II. Because adrenomedullin had no effects on ANG II- and norepinephrine-induced left ventricular hypertrophy, circulating adrenomedullin appears to act mainly as a regulator of vascular tone and cardiac function.  相似文献   

17.
18.
19.
The effects of a 60-min intravenous infusion of angiotensin II (A II; 4 or 20 ng A II/min/kg body weight) on renal blood flow (RBF; electromagnetic flow transducer, control value 19-25 ml/min/kg), glomerular filtration rate (GFR; control value 4.2-5.0 ml/min/kg), mean arterial blood pressure, sodium excretion, water excretion, and plasma A II and plasma aldosterone concentrations were examined in 6 chronically instrumented female conscious beagle dogs kept on three different dietary sodium intakes (SI): SI 0.5 or SI 2.5 mmol Na/kg/day or SI 4.5 mmol Na/kg/day plus an oral saline load prior to the experiment SI 4.5(+) dogs. Four nanograms A II decreased RBF and GFR in SI 4.5(+) dogs without changing the filtration fraction (FF%); in SI 0.5 dogs the RBF decreased, and the FF% increased. Twenty nanograms A II decreased RBF and increased FF% in all dietary protocols, less in SI 4.5(+) dogs. The mean arterial blood pressure increased in all dietary protocols by 10-15 mm Hg (4 ng A II) and 32-37 mm Hg (20 ng A II). Sodium and water excretions decreased by 32 and 46%, respectively, in SI 4.5(+) dogs at both doses of A II. The plasma aldosterone concentration increased in all but one protocol: 4 ng A II, SI 4.5(+) dogs. It is concluded that when A II plasma concentrations are most likely borderline to pathophysiological conditions (up to an average of 370 pg/ml), the GFR is less decreased than the RBF. This phenomenon also can be observed at lower plasma A II concentrations (average 200 pg/ml), when the renin-angiotensin system had been previously moderately activated.  相似文献   

20.
The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT(1a)R(-/-)), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT(1a)R(-/-) vs. AT(1a)R(+/+) mice. ICV leptin in rats increased AT(1a)R and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT(1a)R mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号