首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Interleukin (IL)-12 is a heterodimeric cytokine that is critical for the development of a T-helper-1 immune response and immunity against intracellular pathogens. The IL-12 p40 gene product, expressed specifically in macrophages and dendritic cells, heterodimerizes with p35 to form bioactive IL-12, and heterodimerizes with p19 to comprise the cytokine IL-23. Regulation of the murine IL-12 p40 promoter is complex. Multiple cis-acting elements have been characterized that are involved in activation by bacterial products. However, molecular mechanisms through which interferon (IFN)-gamma and bacterial products synergistically activate IL-12 p40 gene expression are less clear. In this study, a composite NFAT/ICSBP binding site at -68 to -54 is identified that is functionally important for p40 promoter activation by lipopolysaccharide (LPS) and LPS plus IFN-gamma. DNA binding of NFAT and ICSBP is demonstrated on the endogenous promoter by chromatin immunoprecipitation. NFAT is required for ICSBP binding to this region. Overexpression of NFAT and ICSBP synergistically activates the p40 promoter. A dominant negative NFAT molecule attenuates LPS- and IFN-gamma-activated endogenous IL-12 p40 mRNA expression. A physical association between NFAT and ICSBP in the absence of DNA is detected by co-immunoprecipitation of endogenous proteins. Three NFAT domains are required for ICSBP interaction. Finally, in LPS- and IFN-gamma-activated RAW-264.7 cells, the association between NFAT and ICSBP is abrogated by IL-10 priming.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Each of the three Th2 cytokine genes, IL-4, IL-5, and IL-13, has different functions. We hypothesized that Th2 heterogeneity could yield Th2 subpopulations with different cytokine expression and effector functions. Using multiple approaches, we demonstrate that human Th2 cells are composed of two major subpopulations: a minority IL-5(+) (IL-5(+), IL-4(+), IL-13(+)) and majority IL-5(-) Th2 (IL-5(-), IL-4(+), IL-13(+)) population. IL-5(+) Th2 cells comprised only 20% of all Th2 cells. Serial rounds of in vitro differentiation initially yielded IL-5(-) Th2, but required multiple rounds of differentiation to generate IL-5(+) Th2 cells. IL-5(+) Th2 cells expressed less CD27 and greater programmed cell death-1 than IL-5(-) Th2 cells, consistent with their being more highly differentiated, Ag-exposed memory cells. IL-5(+) Th2 cells expressed greater IL-4, IL-13, and GATA-3 relative to IL-5(-) Th2 cells. GATA-3 and H3K4me(3) binding to the IL5 promoter (IL5p) was greater in IL-5(+) relative to IL-5(-) Th2 cells, whereas there was no difference in their binding to the IL4p and IL13p. Conversely, H3K27me(3) binding to the IL5p was greater in IL-5(-) Th2 cells. These findings demonstrate Th2 lineage heterogeneity, in which the IL5 gene is regulated in a hierarchical manner relative to other Th2 genes. IL-5(+) Th2 cells are phenotypically distinct and have epigenetic changes consistent with greater IL5p accessibility. Recurrent antigenic exposure preferentially drives the differentiation of IL-5(+) Th2 cells. These results demonstrate that IL-5(+) and IL-5(-) Th2 cells, respectively, represent more and less highly differentiated Th2 cell subpopulations. Such Th2 subpopulations may differentially contribute to Th2-driven pathology.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号