首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel purine-based fluoroaryl triazoles were synthesized using the Cu(I) catalyzed 1,3-dipolar cycloaddition reactions (click reactions), and assayed for their neuroprotective effects using fluorescence electron microscopy. Among these triazoles, o-fluorophenylmetyl-triazole, 7, has comparable neuroprotective effect as that of Flavopiridol (1) and Roscovitine (2), the state of the art CDK inhibitors, against the Aβ induced neurotoxicity. These results are substantiated using computer docking methods (DarwinDock/GenDock), which predict that Roscovitine and the triazole 7 bind to the ATP-binding site of CDK5/p25 with comparable binding energies, whereas the corresponding pentafluorophenylmethyl-triazole, 9, has dramatically reduced binding energy (in accordance with its lack of neuroprotection). These combined experimental and theoretical studies support the involvement of CDK5/p25 in the neuronal cell cycle re-entry.  相似文献   

2.
3.
4.
The Mdm2 protein is the major regulator of the tumor suppressor protein p53. We show that the p53 protein associates both with the N-terminal and with the central domain of Mdm2. The central p53-binding site of Mdm2 encompasses amino acids 235-300. Binding of p53 to the central domain is significantly enhanced after phosphorylation of the central domain of Mdm2. The N-terminal and central domains of Mdm2 act synergistically in binding to p53. p53 mutants that have mutations in the tetramerization domain and that fail to oligomerize do not show such an enhancement of binding in the presence of the other binding site.  相似文献   

5.
6.
7.
The p53 tumor suppressor requires tetramerization to function as an initiator of cell cycle arrest and/or apoptosis. Children in southern Brazil that exhibit an elevated incidence of adrenocortical carcinoma (ACC) harbor an Arg 337 to His mutation within the tetramerization domain of p53 (p53-R337H; 35 of 36 patients). The mutant tetramerization domain (p53tet-R337H) adopts a native-like fold but is less stable than the wild type domain (p53tet-wt). Furthermore, the stability of p53tet-R337H is highly sensitive to pH in the physiological range; this sensitivity correlates with the protonation state of the mutated His 337. These results demonstrate a pH-sensitive molecular defect of p53 (R337H), suggesting that pH-dependent p53 dysfunction is the molecular basis for these cases of ACC in Brazilian children.  相似文献   

8.
Cyclin-dependent kinases (CDKs) are important regulators of the eukaryotic cell division cycle. To study protein-protein interactions involving plant CDKs, the Arabidopsis thaliana Cdc2aAt was used as bait in the yeast two-hybrid system. Here we report on the isolation of ICK2, and show that it interacts with Cdc2aAt, but not with a second CDK from Arabidopsis, Cdc2bAt. ICK2 contains a carboxy-terminal domain related to that of ICK1, a previously described CDK inhibitor from Arabidopsis, and to the CDK-binding domain of the mammalian inhibitor p27Kip1. Outside of this domain, ICK2 is distinct from ICK1, p27Kip1, and other proteins. At nanogram levels (8 nM), purified recombinant ICK2 inhibits p13Suc1-associated histone H1 kinase activity from Arabidopsis tissue extracts, demonstrating that it is a potent inhibitor of plant CDK activity in vitro. ICK2 mRNA was present in all tissues analysed by Northern hybridization, and its distribution was distinct from that of ICK1. These results demonstrate that plants possess a family of differentially regulated CDK inhibitors that contain a conserved carboxy terminal but with distinct amino terminal regions.  相似文献   

9.
MAP kinases (MAPKs) form a complex with MAPK kinases (MAPKKs), MAPK-specific phosphatases (MKPs) and various targets including MAPKAPKs. These docking interactions contribute to regulation of the specificity and efficiency of the enzymatic reactions. We have previously identified a docking site on MAPKs, termed the CD (common docking) domain, which is utilized commonly for docking interactions with MAPKKs, MKPs and MAPKAPKs. However, the CD domain alone does not determine the docking specificity. Here we have identified a novel site on p38 and ERK2 MAPKs that regulates the docking specificity towards MAPKAPKs. Remarkably, exchange of two amino acids in this site of ERK2 for corresponding residues of p38 converted the docking specificity for MAPKAPK-3/3pk, which is a dominant target of p38, from the ERK2 type to the p38 type, and vice versa. Furthermore, our detailed analyses with a number of MAPKAPKs and MKPs suggest that a groove in the steric structure of MAPKs, which comprises the CD domain and the site identified here, serves as a common docking region for various MAPK-interacting molecules.  相似文献   

10.
Shieh SY  Taya Y  Prives C 《The EMBO journal》1999,18(7):1815-1823
Upon DNA damage, p53 has been shown to be modified at a number of N-terminal phosphorylation sites including Ser15 and -33. Here we show that phosphorylation is induced as well at a novel site, Ser20. Phosphorylation at Ser15, -20 and -33 can occur within minutes of DNA damage. Interestingly, while the DNA-binding activities of p53 appear to be dispensable, efficient phosphorylation at these three sites requires the tetramerization domain of p53. Substitution of an artificial tetramerization domain for this region also permits phosphorylation at the N-terminus, suggesting that oligomerization is important for DNA damage-induced signalling to p53.  相似文献   

11.
The cyclin-dependent kinase (CDK) inhibitor roscovitine is under evaluation in clinical trials for its antiproliferative properties. Roscovitine arrests cell cycle progression in G1 and in G2 phase by inhibiting CDK2 and CDK1, and possibly CDK7 and CDK9. However, the effects of CDK2 inhibition in S-phase cells have been not fully investigated. Here, we show that a short-term treatment with roscovitine is sufficient to inhibit DNA synthesis, and to activate a DNA damage checkpoint response, as indicated by phosphorylation of p53-Ser15, replication protein A, and histone H2AX. Analysis of DNA replication proteins loaded onto DNA during S phase showed that the amount of proliferating cell nuclear antigen (PCNA), a cofactor of DNA replication enzymes, was significantly reduced by roscovitine. In contrast, chromatin-bound levels of DNA polymerase δ, DNA ligase I and CDK2, were stabilized. Checkpoint inhibition with caffeine could rescue PCNA disassembly only partially, pointing to additional effects due to CDK2 inhibition and the presence of replication stress. These results suggest that in S-phase cells, roscovitine induces checkpoint-dependent and -independent effects, leading to stabilization of replication forks and an uncoupling between PCNA and PCNA-interacting proteins.  相似文献   

12.
Tetramerization of p53 is crucial to exert its biological activity, and nucleolar disruption is sufficient to activate p53. We previously demonstrated that nucleolar stress induces translocation of the nucleolar protein MYBBP1A from the nucleolus to the nucleoplasm and enhances p53 activity. However, whether and how MYBBP1A regulates p53 tetramerization in response to nucleolar stress remain unclear. In this study, we demonstrated that MYBBP1A enhances p53 tetramerization, followed by acetylation under nucleolar stress. We found that MYBBP1A has two regions that directly bind to lysine residues of the p53 C-terminal regulatory domain. MYBBP1A formed a self-assembled complex that provided a molecular platform for p53 tetramerization and enhanced p300-mediated acetylation of the p53 tetramer. Moreover, our results show that MYBBP1A functions to enhance p53 tetramerization that is necessary for p53 activation, followed by cell death with actinomycin D treatment. Thus, we suggest that MYBBP1A plays a pivotal role in the cellular stress response.  相似文献   

13.
Olomoucine and Roscovitine are two ATP-competing compounds described as specific inhibitors of cyclin-dependent kinases (CDK). Both drugs showed to induce apoptosis in SH-SY5Y, a neuroblastoma-derived cell line. In these cells, neither Bcl-2 nor Bcl-XL overexpression conferred any resistance to both drugs. However, a partial protective effect was detected when cells were treated with a general inhibitor of caspases (zVADfmk), cycloheximide (CHX), or actinomycin D (DAct). Interestingly, a synergism in cell protection was observed between zVADfmk and macromolecular synthesis inhibitors, thus suggesting different apoptotic pathways in distinct subpopulations of the cell culture. On the other hand, no lethality was found when cells were treated with either PD98059 or UO126. This discarded Erk1/Erk2 inhibition as the cause of apoptosis. Furthermore, SH-SY5Y cells became resistant to either Olomoucine or Roscovitine upon the induction of differentiation. This resistance correlated with the extent of differentiation and, therefore, the number of cells entering a quiescent state. In conclusion, our results seem to support a role for CDK inhibition as the cause of the apoptotic process triggered by Olomoucine and Roscovitine. In addition, we contribute to define a promising profile as anticancer drugs for both compounds, at least in the treatment of neuroblastoma.  相似文献   

14.
15.
16.
The structures of the MAP kinase p38 in complex with docking site peptides containing a phi(A)-X-phi(B) motif, derived from substrate MEF2A and activating enzyme MKK3b, have been solved. The peptides bind to the same site in the C-terminal domain of the kinase, which is both outside the active site and distinct from the "CD" domain previously implicated in docking site interactions. Mutational analysis on the interaction of p38 with the docking sites supports the crystallographic models and has uncovered two novel residues on the docking groove that are critical for binding. The two peptides induce similar large conformational changes local to the peptide binding groove. The peptides also induce unexpected and different conformational changes in the active site, as well as structural disorder in the phosphorylation lip.  相似文献   

17.
Mortalin was over expressed in tumor cells and bind to p53 protein. This interaction was suggested to promote sequestration of p53 in the cytoplasm, thereby inhibiting its nuclear activity. The p53 is a tumor suppressor that is essential for the prevention of cancer development and loss of p53 function is one of the early events in immortalization of human cells. Therefore, abrogation p53-mortalin interaction using small molecule is guaranteed stop cancer cell grow. However study interaction of p53-mortalin, and its inhibition using small molecule is still challenging because specific site of mortalin that bind to p53, vice versa, is still debatable. This study has aims to analyze the p53-binding site of mortalin using molecular docking and to screen drug-like compounds that have potential as inhibitors of p53-mortalin interaction using virtual screening. The result showed that the lowest energy binding of p53-mortalin complex is -31.89 kcal/mol, and p53 protein bind to substrate binding domain of mortalin (THR433; VAL435; LEU436; LEU437; PRO442; ILE558; LYS555). Furthermore, the p53-binding domain of mortalin was used as receptor to screen 9000 drug-like compounds from ZINC database using molecular docking program Auto Dock Vina in PyRx 0.8 (Virtual Screening Tools). Here, we have identified three drug-like compounds that are ZINC01019934, ZINC00624418 and ZINC00664532 adequate to interrupt stability of p53-mortalin complex that warrant for anticancer agent.  相似文献   

18.
The transitions of the cell cycle are regulated by the cyclin dependent protein kinases(CDKs). The cyclins activate their respective CDKs and confer substrate recognitionproperties. We report the structure of phospho-CDK2/cyclin B and show that cyclin Bconfers M phase-like properties on CDK2, the kinase that is usually associated with S phase.Cyclin B produces an almost identical activated conformation of CDK2 as that produced bycyclin A. There are differences between cyclin A and cyclin B at the recruitment site, whichin cyclin A is used to recruit substrates containing an RXL motif. Because of sequencedifferences this site in cyclin B binds RXL motifs more weakly than in cyclin A. Despitesimilarity in kinase structures, phospho-CDK2/cyclin B phosphorylates substrates, such asnuclear lamin and a model peptide derived from p107, at sequences SPXX that differ fromthe canonical CDK2/cyclin A substrate recognition motif, SPXK. CDK2/cyclin Bphosphorylation at these non-canonical sites is not dependent on the presence of a RXLrecruitment motif. The p107 peptide contained two SP motifs each followed by a noncanonicalsequence of which only one site (Ser640) is phosphorylated by pCDK2/cyclin Awhile two sites are phosphorylated by pCDK2/cyclin B. The second site is too close to theRXL motif to allow the cyclin A recruitment site to be effective, as previous work has shownthat there must be at least 16 residues between the catalytic site serine and the RXL motif.Thus the cyclins A and B in addition to their role in promoting the activatory conformationalswitch in CDK2, also provide differential substrate specificity.  相似文献   

19.
20.
A complete set of mono-, di- and triphosphorylated peptides comprising amino acids 10-27, the Mdm2 and p300 binding site(s) of p53, with and without a fluorescein label at the N-terminus, was synthesized by step-by-step solid phase synthesis. Fluorescence polarization analysis revealed that phosphorylation at Thr18 decreased binding to recombinant Mdm2 protein compared with the unphosphorylated and the two other single phosphorylated analogues. Unlabelled multiply phosphorylated peptides corresponding to this amino-terminal transactivation domain proved to be powerful tools in analysing the phosphate specificity of existing anti-p53 monoclonal and polyclonal antibodies using direct ELISA. The tetramerization domain of human p53 protein was modelled with a 53 residue-long unlabelled unphosphorylated and Ser315-phosphorylated peptide pair. CD analysis showed similar alpha-helical structures for both peptides and no major difference in the secondary structure could be observed upon phosphorylation. Size-exclusion HPLC indicated that these synthetic oligomerization domain mimics underwent a pH-dependent tetramerization process, but the presence of a phosphate group at Ser315 did not modify the oligomeric state of the 308-360 p53 fragments. Nevertheless, the fluorescein-labelled Ser315 phosphorylated peptide bound to the downstream signalling ligand DNA topoisomerase I protein with slightly higher affinity than did the unphosphorylated analogue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号