首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were performed to test the hypothesis that the renal interstitial hydrostatic pressure (RIHP) response to acute volume expansion is suppressed in diabetes mellitus. Sprague-Dawley rats received streptozotocin (STZ rats; 65 mg/kg ip) or vehicle (Sham rats). Two weeks later, RIHP and Na(+) excretion responses to acute graded volume expansion with isotonic saline were quantified under Inactin anesthesia (0.1 mg/kg ip). In Sham rats, acute graded volume expansion to 10% body wt produced increases in RIHP (Delta = 12.2 +/- 2.4 mmHg), urine flow (Delta = 54 +/- 8 microliter. min(-1). g(-1)), and Na(+) excretion (Delta = 11.5 +/- 1.9 mueq. min(-1). g(-1)). In STZ rats, these volume expansion-induced responses were significantly blunted (RIHP by 50%, urine flow by 81%, and Na(+) excretion by 76%). Renal decapsulation eliminated the differences between STZ and Sham rats with regard to volume expansion-induced increases in RIHP, urine flow, and Na(+) excretion. Renal denervation normalized the RIHP response to volume expansion and improved the diuretic and natriuretic responses in STZ rats. Moreover, diuretic and natriuretic responses to direct changes in RIHP (induced by renal interstitial volume expansion) were blunted in STZ rats. We conclude that diminished alterations in RIHP, as well as a reduced impact of RIHP on Na(+) excretion, contribute to the impaired diuretic and natriuretic responses to acute volume expansion during the early stage of diabetes.  相似文献   

2.
Yu T  Khraibi AA 《Life sciences》2008,83(9-10):364-368
The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure, fluid and electrolyte homeostasis. The RAS is activated and renal interstitial hydrostatic pressure (RIHP) is decreased in diabetic rats. The objective of this study was to evaluate the roles of proximal tubule reabsorption and RAS in the decreased RIHP and blunted natriuretic and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Enalapril was utilized to inhibit angiotensin II (AII) formation. Diabetes mellitus (DM) was induced by a single intraperitoneal (i.p.) injection of streptozotocin (STZ, 65 mg/kg). RIHP was measured by a polyethylene (PE) matrix that was chronically implanted in the left kidney. Fractional excretion of phosphate (FE(Pi)) and fractional excretion of lithium (FE(Li)) were used as indexes for proximal tubule reabsorption. VE significantly increased both FE(Li) and FE(Pi) in all groups of rats studied. However, the increase in FE(Li) (DeltaFE(Li)=17.26+/-3.83%) and FE(Pi) (DeltaFE(Pi)=7.38+/-2.37%) in diabetic rats (DC, n=12) were significantly lower as compared with those in nondiabetic control rats (NC, n=8; DeltaFE(Li)=32.15+/-4.71% and DeltaFE(Pi)=20.62+/-3.27%). The blunted increases in FE(Li) and FE(Pi) were associated with an attenuated increase in RIHP (DeltaRIHP) in DC (1.8+/-0.4 mm Hg) compared with NC rats (4.3+/-0.3 mm Hg). Enalapril treatment (25 mg/kg/day in drinking water) had no effect on nondiabetic rats (NE, n=8) as compared with untreated NC rats, but significantly improved RIHP response (DeltaRIHP) to VE in diabetic rats (DE, n=9; 2.8+/-0.5 mm Hg). Both DeltaFE(Li) and DeltaFE(Pi) were restored by enalapril treatment in diabetic rats and no significant differences were found in DeltaFE(Li) and DeltaFE(Pi) between DE (DeltaFE(Li)=26.81+/-4.94% and DeltaFE(Pi)=10.45+/-4.67%) and NC groups of rats in response to VE. These data suggest that the activated RAS and the decrease in RIHP may play an important role in the increased proximal tubule reabsorption, and the attenuated natriuretic and diuretic responses to acute volume expansion in diabetic rats.  相似文献   

3.
Tang D  Yu T  Khraibi AA 《Life sciences》2004,74(23):2909-2918
The objective of this study was to characterize the cardiovascular and renal alterations that occur during diabetic pregnancy, and to evaluate the effect of insulin treatment in 12-14 days pregnant diabetic rats. Four groups of female Sprague Dawley rats were studied: virgin control group (NP), pregnant control group (CP), diabetic pregnant group (DP), and diabetic pregnant group with insulin treatment (DPI). Systolic arterial pressure (SAP) was increased on day 12, whereas heart rate (HR) decreased starting with day 3 in DP group of rats. DP rats exhibited marked renal hypertrophy with greater kidney weight (wt) and kidney wt/body wt ratio. Insulin treatment normalized blood glucose (BG) concentration, SAP and HR, and prevented the increase in kidney wt/body wt ratio in DPI rats. At the time of the terminal acute experiment, acute saline volume expansion (VE, 5% body wt/30 min) significantly increased renal interstitial hydrostatic pressure (RIHP), urinary sodium excretion (U(Na)V) and urine flow rate (V) in all groups, but the increases (Delta) were significantly attenuated in both CP (1.7 +/- 0.2mmHg, 12.0 +/- 1.5 microEq.min(-1).g kidney wt(-1) and 76.2 +/- 10.9 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) and DP (1.3 +/- 0.1 mmHg, 6.8 +/- 1.8 microEq.min(-1).g kidney wt(-1) and 32.3 +/- 9.3 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) group of rats as compared to NP (4.0 +/- 0.6 mmHg, 21.6 +/- 1.4 microEq.min(-1).g kidney wt(-1)and 136.8 +/- 10.5 microl.min(-1).g kidney wt(-1) for DeltaRIHP, DeltaU(Na)V and DeltaV respectively) group of rats. Although RIHP response to VE was similar in DP and CP group of rats, the natriuretic and diuretic responses to VE were significantly lower in DP as compared to CP group of rats. Insulin treatment had no effect on RIHP response (DeltaRIHP = 1.5 +/- 0.3 mmHg), but restored most of the natriuretic (DeltaU(Na)V = 15.7 +/- 2.9 microEq.min(-1).g kidney wt(-1)) and diuretic (DeltaV = 100.2 +/- 19.3 microl.min(-1).g kidney wt(-1)) responses to VE in DPI as compared with CP group of rats. These data suggest that with VE, the restoration of the increase in U(Na)V and V with insulin treatment in diabetic pregnant rats is not mediated by changes in RIHP.  相似文献   

4.
Granda TG  Velasco A 《Life sciences》2002,71(21):2475-2487
The effect of insulin treatment on the daily distribution of the urinary volume and urinary sodium and potassium excreted, as well as their clearance rhythms in rats with streptozotocin (STZ)-induced diabetes was investigated. Normal(C), uncontrolled (D) and controlled insulin diabetic rats (DI), were studied during a light-dark (12 h:12 h) cycle and given food and water ad libitum. The DI rats showed a significant reduction in the urinary sodium and potassium excreted during 24 h with respect to the D rats, though these values were significantly higher than the C ones. A loss of the normal circadian rhythmicity of diuresis and both sodium and potassium clearance was observed in the D rats, together with higher values of M (MESOR) than in the C rats. These rhythms could be reestablished with continuous insulin infusion, their orthophases occurring near the C ones. However the M values of sodium and potassium clearance in DI rats are greater than C, showing higher values than this group during the rest phase. These results in DI rats may suggest that the constant rate infusion of insulin can be responsible for the high values of clearance of both ions at the rest phase and so for the incomplete renal rhythms restoration.  相似文献   

5.
Several researches attempt to protect diabetic patients from the development of nephropathy. Involvement of leptin and renal Na+,K+-ATPase enzyme in diabetic nephropathy (DN) development is a recent field for researches. Vanadium, as a trace element with insulin mimetic effect, may act synergistically with insulin to protect against the development of DN. Sixty male Sprague Dawley rats were divided into six groups: control group (C), vanadium control group (CV), streptozotocin-induced diabetic group (D), insulin-treated diabetic group (DI), vanadium-treated diabetic group (DV), and combined insulin and vanadium-treated diabetic group. Six weeks later, systolic blood pressure (SBP) was measured and retro-orbital blood samples were collected to estimate glycosylated hemoglobin (HbA1c), serum sodium (Na+) and creatinine, blood urea nitrogen (BUN) and plasma leptin levels. Preparation of microsomal fraction of renal tissue homogenate for estimation of Na+,K+-ATPase activity was done. The D group showed a significant increase in SBP, HbA1c, serum Na+, creatinine, and BUN levels and Na+,K+-ATPase activity in microsomal fraction of renal tissue homogenate while plasma leptin level decreased significantly compared with C and CV groups. Both DI and DV groups showed a significant improvement in all the above measured parameters compared with D group while there were no significant changes between the DI and DV groups. Concomitant treatment with insulin and vanadium resulted in a significant improvement in all the measured parameters compared to each alone. Vanadium in combination with insulin ameliorates DN markers and reduces renal Na+,K+-ATPase overactivity in diabetic rats. An effect that may be partially mediated through correction of hypoleptinemia observed in these animals.  相似文献   

6.
Recently, we established that hypothalamo-pituitary-adrenal (HPA) and counterregulatory responses to insulin-induced hypoglycemia were impaired in uncontrolled streptozotocin (STZ)-diabetic (65 mg/kg) rats and insulin treatment restored most of these responses. In the current study, we used phloridzin to determine whether the restoration of blood glucose alone was sufficient to normalize HPA function in diabetes. Normal, diabetic, insulin-treated, and phloridzin-treated diabetic rats were either killed after 8 days or subjected to a hypoglycemic (40 mg/dl) glucose clamp. Basal: Elevated basal ACTH and corticosterone in STZ rats were normalized with insulin but not phloridzin. Increases in hypothalamic corticotrophin-releasing hormone (CRH) and inhibitory hippocampal mineralocorticoid receptor (MR) mRNA with STZ diabetes were not restored with either insulin or phloridzin treatments. Hypoglycemia: In response to hypoglycemia, rises in plasma ACTH and corticosterone were significantly lower in diabetic rats compared with controls. Insulin and phloridzin restored both ACTH and corticosterone responses in diabetic animals. Hypothalamic CRH mRNA and pituitary pro-opiomelanocortin mRNA expression increased following 2 h of hypoglycemia in normal, insulin-treated, and phloridzin-treated diabetic rats but not in untreated diabetic rats. Arginine vasopressin mRNA was unaltered by hypoglycemia in all groups. Interestingly, hypoglycemia decreased hippocampal MR mRNA in control, insulin-, and phloridzin-treated diabetic rats but not uncontrolled diabetic rats, whereas glucocorticoid receptor mRNA was not altered by hypoglycemia. In conclusion, despite elevated basal HPA activity, HPA responses to hypoglycemia were markedly reduced in uncontrolled diabetes. We speculate that defects in the CRH response may be related to a defective MR response. It is intriguing that phloridzin did not restore basal HPA activity but it restored the HPA response to hypoglycemia, suggesting that defects in basal HPA function in diabetes are due to insulin deficiency, but impaired responsiveness to hypoglycemia appears to stem from chronic hyperglycemia.  相似文献   

7.
Pancreatic islets were isolated from the fetuses of normal rats and rats made diabetic by the iv administration of streptozotocin (STZ) on either Day 3 or 5 of pregnancy. Of the rats made diabetic on Day 3, one group also received insulin injections at the appearance of glucosuria. Maternal blood glucose on Day 20 of gestation was significantly different in the diabetic rats (405 +/- 27 mg/dl) from the normal (97 +/- 1 mg/dl) and insulin-treated diabetic rats (69 +/- 9 mg/dl). While fetal weight was significantly decreased in the STZ-treated rats (2.64 +/- 0.13 g vs 3.52 +/- 0.05 g for the control group, P less than 0.005), fetal glucose was significantly higher in the STZ-treated than in normal pups (342 +/- 11 vs 35 +/- 1 mg/dl, P less than 0.005). Both fetal weight and glucose were normalized by insulin treatment: 3.16 +/- 0.18 g and 31 +/- 7 mg/dl, respectively. Insulin release from fetal islets of diabetic dams was blunted after a week in culture both in basal and stimulated conditions. After 2 weeks in culture, there was partial recovery in the insulin response to glucose but it did not equal to that measured in fetal islets from the normal and insulin-treated diabetic rats. These data suggest maternal hyperglycemia severely impairs fetal weight and insulin release from fetal rat islets in vitro, and correction of the hyperglycemia by insulin treatment not only improves fetal weight and glucose concentrations, but it also normalizes insulin release from fetal rat islets in vitro.  相似文献   

8.
Isolated perfused hearts from diabetic rats exhibit a decreased responsiveness to increasing work loads. However, the precise time point at which functional alterations occur is not clearly established. Previous observations in our laboratory have suggested that the alterations in myocardial function are not apparent at 30 days whereas they are clearly seen 100 days after streptozotocin-induced diabetes. We studied the cardiac function of 6-week diabetic rats using the isolated perfused heart preparation. The 6-week time period was found to be sufficient to cause depression of myocardial function in these animals. We also studied the effect of insulin treatment on myocardial performance of diabetic rats. Insulin treatment was initiated 3 days and 6 weeks after injection of streptozotocin (STZ). The treatment was continued for 6 and 4 weeks in the respective groups. Hearts from 6-week diabetic animals exhibited a depressed left ventricular developed pressure (LVDP) and positive and negative dP/dt at higher filling pressures when compared with 6-week control animals. However, the depression was not seen in the 6-week insulin-treated diabetic animals. Ten-week diabetic rat hearts also showed a depression of LVDP and positive and negative dP/dt when compared with 10-week controls. The group of animals that had been diabetic for 6 weeks and then treated for 4 weeks with insulin exhibited a reversal of the depressed myocardial function. These results demonstrate that depression of myocardial performance, which is evident 6 weeks after diabetes is induced, can be prevented if insulin treatment is initiated as the disease is induced. Further, insulin treatment is capable of reversing the abnormalities after they have occurred.  相似文献   

9.
Diabetes is known to result in depression of myocardial function, whereas hearts from insulin-treated diabetic rats exhibit functional characteristics similar to controls. In the present study, we have studied the effect of insulin perfusion on cardiac performance of 3-day and 6-week streptozotocin (STZ) diabetic rats. Three days of diabetes did not result in depressed cardiac performance when the hearts were isolated and perfused in the working heart mode. Increasing the concentration of glucose from 5 to 10 mM in the perfusion fluid did not alter the function in either control or in diabetic rat hearts. However, when regular insulin or glucagon-free insulin (Humulin) (5 mU/mL) was included in the perfusion medium, the ventricular function of hearts from control rats was significantly enhanced, while diabetic myocardial function remained unaffected. When the study was repeated on hearts from 6-week diabetic animals, cardiac function of diabetic rats was significantly depressed as compared with controls. As in the 3-day study, contractility was not affected in either group by increasing glucose concentration in the perfusion medium. Again, inclusion of insulin in the medium enhanced cardiac contractility only in control hearts. These results suggest that diabetes results in a loss of myocardial sensitivity to insulin which seems to occur as early as 3 days after induction of diabetes with STZ. The study also demonstrates that the beneficial effects of in vivo insulin treatment on myocardial alterations induced by diabetes are not due to its direct myocardial effects.  相似文献   

10.
We investigated the relationship between the changes in vascular responsiveness and growth factor mRNA expressions induced by 1-wk treatment with high-dose insulin in control and established streptozotocin (STZ)-induced diabetes. Aortas from diabetic rats, but not those from insulin-treated diabetic rats, showed impaired endothelium-dependent relaxation in response to ACh (vs. untreated controls). The ACh-induced nitrite plus nitrate (NOx) level showed no significant difference between controls and diabetics. Insulin treatment increased NOx only in diabetics. In diabetics, insulin treatment significantly increased the aortic expressions of endothelial nitric oxide synthase (eNOS) mRNA and VEGF mRNA. The expression of IGF-1 mRNA was unaffected by diabetes or by insulin treatment. In contrast, the mRNA for the aortic IGF-1 receptor was increased in diabetics and further increased in insulin-treated diabetics. In aortic strips from age-matched control rats, IGF-1 caused a concentration-dependent relaxation. This relaxation was significantly stronger in strips from STZ-induced diabetic rats. These results suggest that in STZ-diabetic rats, short-term insulin treatment can ameliorate endothelial dysfunction by inducing overexpression of eNOS and/or VEGF mRNAs possibly via IGF-1 receptors. These receptors were increased in diabetes, perhaps as result of insulin deficiency.  相似文献   

11.
To determine whether the renal responses to atrial natriuretic factor (ANF) are altered in the diabetic state, the diuretic and natriuretic responses to ANF (0.25 microgram.kg-1.min-1, i.v.) were measured in streptozotocin (STZ) induced diabetic (DIA) rats. Urine flow and sodium excretion were measured before and after ANF from innervated and denervated kidneys in anesthetized (Inactin 0.1 g/kg, i.p.) control and DIA rats (Sprague-Dawley rats injected with vehicle or STZ 65 mg/kg, i.p., respectively, 2 weeks prior to the experiment). Blood glucose levels were significantly elevated in the DIA group compared with the control group. ANF produced a significantly blunted diuresis and natriuresis in DIA rats compared with control rats. In addition, reducing the hyperglycemia in DIA rats by treatment with insulin (third group) reversed the blunted urine flow and sodium excretion responses to ANF. This study demonstrates that (i) there is a blunted natriuresis and diuresis to ANF in the STZ-induced DIA rats, and (ii) restoring the glucose levels to normal by insulin treatment in the DIA rats normalized the renal responses to ANF.  相似文献   

12.
《Free radical research》2013,47(4):412-419
Abstract

In type 1 diabetic subjects, hyperglycemia-induced oxidant stress (OS) plays a central role in the onset and development of diabetes complications. This study aimed to assess the benefits of an endurance training program and insulin therapy, alone or in combination, on the glycemic regulation, markers for OS, and antioxidant system in diabetic rats. Forty male Wistar rats were divided into diabetic (D), insulin-treated diabetic (D-Ins), diabetic trained (D-Tr), or insulin-treated diabetic trained (D-Ins+ Tr) groups. An additional healthy group served as control group. Insulin therapy (Lantus, insulin glargine, Sanofi) and endurance training (a treadmill run of 60 min/day, 25 m/min, 5 days/week) were initiated 1 week after streptozotocin-induced diabetes (45 mg/kg) and lasted for 8 weeks. At the end of the protocol, blood glucose and fructosamine levels, markers for skeletal muscle OS (CML, isoprostanes, GSH/GSSG) and antioxidant system (SOD and GPx activity, ORAC) were assessed. In diabetic rats, the glycemic control was altered and OS marker levels were increased, while the antioxidant system activity remained unchanged. Insulin treatment improved the glycemic regulation, the pro-antioxidant status, and contributed to the reduction of OS marker levels. Endurance training decreased OS marker levels without improving the antioxidant enzyme activity. Endurance training and insulin therapy acted independently (by different ways), but their association prolonged the insulin action and allowed a better adaptation of the antioxidant system. To conclude, our results demonstrate that combination of insulin treatment and endurance training leads to greater benefits on the glycemic regulation and oxidant status.  相似文献   

13.
Prolactin (PRL) binding to Leydig cells in prepubertal and pubertal streptozotocin (STZ)-diabetic and insulin-treated rats was studied. Prepubertal (30-day-old) and pubertal (50-day-old) rats were made diabetic by single injection of STZ (120 and 100 mg/kg b.wt, respectively). After 3 days of STZ administration, a group of rats was given insulin injections subcutaneously (3 U/100 g b.wt/day in 2 equally divided doses). Animals of prepubertal and pubertal groups were killed on postnatal days 51 and 71, respectively. Age-dependent increase in serum testosterone, PRL levels and PRL receptors on Leydig cells were prevented by STZ-diabetes. Insulin administration partly or completely prevented these changes. These results suggest that steroidogenic defects in Leydig cells of prepubertal and pubertal diabetic rats may be associated with decrease in serum PRL levels and its receptors on Leydig cells. Insulin probably has a role in the maintenance of PRL receptor numbers on Leydig cells during pubertal maturation.  相似文献   

14.
Both insulin and PPAR-alpha up-modulate hepatic Delta9, Delta6 and Delta5 desaturating enzymes involved in the biosynthesis of mono- and polyunsaturated fatty acids. Currently, we have examined for 9 days the independent and simultaneous effects of daily glargine insulin and fenofibrate administration on the insulinemia, glycemia, hepatic acyl-CoA oxidase activity and mRNAs and enzymatic activities of stearoyl-CoA desaturase-1 (SCD-1) and Delta5 desaturase in streptozotocin diabetic rats. Glargine insulin depressed the hyperglycemia of diabetic rats at 4h, but not after 24h of injection. Fenofibrate increased the radioimmunoreactive insulinemia in non-diabetic rats without changing the glycemia. Insulin increased the mRNAs and activities of SCD-1 and Delta5 desaturase depressed in diabetic rats. Fenofibrate increased acyl-CoA oxidase activity, and the mRNAs and activities of both desaturating enzymes in non-diabetic, diabetic and insulin-treated diabetic rats, but was less effective in the mRNAs modification of diabetic animals. Therefore, insulin, and fenofibrate through PPAR-alpha activation, enhance liver mRNAs and activities of SCD-1 and Delta5 desaturases independently and synergistically through different mechanisms. Insulin and fenofibrate independently increased the 18:1/18:0 ratio in liver lipids, increasing the fluidity of the membranes. The 20:4/18:2 ratio was maintained. Fenofibrate increased palmitic acid, but decreased stearic acid percentage in liver lipids.  相似文献   

15.
In short-term experiments, male Wistar rats were made diabetic for 10 days with a single injection of streptozotocin (65 mg/kg body weight). One group of diabetic rats was treated with insulin for 3 days prior to sacrifice. In long-term experiments, vitamin D replete or vitamin D depleted rats were made diabetic for 6 weeks. Criteria for diabetes were loss of weight, glycosuria (Tes-Tape), and hyperglycemia. In long-term diabetic rats the activity of renal mitochondrial 25-hydroxyvitamin D3 (25-(OH)D3) 1 alpha-hydroxylase was significantly decreased and that of 25-(OH)D3 24-hydroxylase increased. However, the parathyroid hormone (PTH) sensitive renal adenylate cyclase activity of diabetic rats was not different from that of the nondiabetic rats in either the vitamin D replete group or the vitamin D depleted group. On the other hand, the PTH-sensitive renal adenylate cyclase activity was significantly higher in short-term diabetic rats than in control and insulin-treated rats. These differences were observed at doses of 10(-8) to 10(-5) M of PTH. This study has demonstrated for the first time that there are differences in the PTH-sensitive adenylate cyclase response between long-term and short-term diabetic rats. The hypersensitivity to PTH of the renal adenylate cyclase observed in short-term diabetic rats probably represents a response to insulin deficiency during the early development of diabetes mellitus in the rats.  相似文献   

16.
In order to examine the involvement of insulin in the activity of Na+/glucose cotransporter in rat small intestine, we compared Na(+)-dependent uptake of D-glucose by brush-border membrane vesicles prepared from control, streptozotocin-induced diabetic, insulin-treated diabetic and starved diabetic rats. In four groups, the uptake of D-glucose showed a transient overshoot in the presence of Na+ gradient between medium and vesicles (medium greater than vesicles). The overshoot magnitude was increased (1.8-fold of controls) in diabetic brush border membrane vesicles and recovered to the control level by the treatment of diabetic rats with insulin. In contrast, increased uptake of D-glucose in diabetic rats was not recovered by the starvation of diabetic rats although the blood glucose level was the same as that of controls. Furthermore, we attempted to examine phlorizin binding activities among four groups. Scatchard analysis indicated that phlorizin binding to diabetic brush border membrane vesicles was increased (1.6-fold of controls) without a change of the affinity for phlorizin as compared with controls. Increased binding of phlorizin to diabetic brush border membrane vesicles was also recovered to the control level by the treatment of diabetic rats with insulin, but not by starvation. These results suggested that the increased activity of Na+/glucose cotransporter in diabetic rats was due to the increase of the number of cotransporter and that intestinal cotransporter was physiologically controlled by insulin, but not by blood glucose levels.  相似文献   

17.
In order to investigate the regulation of glucose transporter gene expression in the altered metabolic conditions of obesity and diabetes, we have measured mRNA levels encoding GLUT2 in the liver and GLUT4 in the gastrocnemius muscle from various insulin resistant animal models, including Zucker fatty, Wistar fatty, and streptozocin(STZ)-treated diabetic rats. Northern blot analysis revealed that GLUT2 mRNA levels were significantly (P less than 0.001) elevated in 14 wk Zucker fatty and Wistar fatty rats relative to lean littermates but were similar in these two groups at 5 wk of age. Furthermore, there was significant increase (P less than 0.01) in GLUT2 mRNA levels in STZ diabetic rats at 3 wk after treatment. GLUT4 mRNA levels were not significantly different between control and insulin resistant rats in all animal models. These results indicate that neither hyperinsulinemia nor hyperglycemia affects GLUT4 mRNA levels in the muscle. However, GLUT2 mRNA levels in the liver were elevated in obesity and diabetes, although this regulatory event occurred independently from circulating insulin or glucose concentrations.  相似文献   

18.
Since insulin compounds can restore some metabolic parameters and lipid profile alterations of the diabetic rat heart, we investigated whether these beneficial effects extend to diabetic rat cardiac dysfunctions. Twenty-four male Wistar albino rats, 6 months of age with an average body weight of 250–320 g, were divided randomly into three groups, each consisting of eight rats: control-group (C) rats were fed with standard rat nutrient and water; diabetic-group (D) rats were treated with a single intramuscular injection of streptozotocin (STZ, 45 mg/kg), dissolved in 0.01 M sodium citrate, pH adjusted to 4.5; and insulin-treated diabetic group (D + INS) rats were treated with subcutaneous injections of 1 IU/l insulin (INS) twice a day after a single intramuscular injection of STZ (45 mg/kg). Treatment of D rats with INS caused a time-dependent decrease in blood glucose. We found that the lipid profile and HbA1c levels in the D + INS group reached the values of control rats at the end of the treatment period. Contraction force in group D was compared with values from groups C and D + INS (p < 0.05). Values were obtained at a muscle contraction and relaxation time of milliseconds, with contraction time in D compared to C and D compared to D + INS and C (p < 0.05). Rate-dependent changes in action potential configuration in left ventricular papillary muscle obtained from 8-week control, STZ-treated D and D + INS rats showed significant membrane potential changes between C and STZ-treated D animals. Action potential amplitude showed significant changes between matched D + INS and STZ-treated D animals. Depolarization time showed significant changes between C and STZ-treated D animals and between the D + INS and D groups. Half-repolarization time showed significant changes between D + INS and STZ-treated D animals and compared to the D and C groups. Our data suggest that the beneficial effects of insulin treatment on the mechanical and electrical activities of the diabetic rat heart appear to be due to restoration of the diminished K+ currents, partially related to the restoration of hyperglycemia.  相似文献   

19.
This study was designed to investigate the effect of quercetin (QE) on bone minerals and biomechanics in insulin-dependent diabetic rats. Diabetes was induced by 50 mg kg(-1) intraperitoneal streptozotocin (STZ) in a single dose. The rats were randomly allotted into four experimental groups: A (control), B (non-diabetic + QE), C (diabetic), and D (diabetic + QE) each containing 10 animals. The diabetic rats received QE (15 mg kg(-1) day(-1)) for 4 weeks following 8 weeks of STZ injection. Blood samples were taken to determine glucose, insulin, calcium, and magnesium levels. The rats' femora were assessed biomechanically at femoral mid-diaphysis and neck. It was found that QE treatment increased insulin, calcium, and magnesium levels. Three-point bending of the femoral mid-diaphysis and necks showed significantly lower maximum load values (F max) in animals in the STZ group than the QE + STZ or control groups (p < 0.05). The results support the conclusion that QE treatment may decrease blood glucose and increase plasma insulin, calcium, and magnesium. QE treatment may also be effective in bone mineral metabolism, biomechanical strength, and bone structure in STZ-induced diabetic rats.  相似文献   

20.
The aim of this research was to examine the effects of a triple antioxidant combination (vitamins E (VE) and C (VC) plus alpha-lipoic acid (LA)) on the total lipid and cholesterol levels and the fatty acid composition of brain tissues in experimental diabetic and non-diabetic rats. VE and LA were injected intraperitoneally (50 mg/kg) four times per week and VC was provided as a supplement dissolved in the drinking water (50 mg/kg). In addition, rats in the diabetes 1 and D+VELAVC groups were given daily by subcutaneous insulin injections (8 IU/kg), but no insulin was given to rats in the diabetes 2 group. The results indicate that the brain lipid levels in the D+VELAVC, diabetes 1 and diabetes 2 groups were higher than in the control group (P<0.01). Total lipid was also higher in the non-diabetic rats treated with LA and VC. Total cholesterol was higher in the diabetes 1 and diabetes 2 groups (P<0.05) than in controls. Cholesterol levels were similar in the D+VELAVC and LA groups but lower in the VC, VE and VELAVC groups of non-diabetic rats (P<0.05 and P<0.01). In respect of fatty acid composition, palmitic acid levels were lower in the diabetes 2 and non-diabetic VE groups than the control group (P<0.05), but higher in the non-diabetic LA group (P<0.05). Oleic acid (18:1 n-9) levels were lower in the diabetic and non-diabetic groups than the control group (P<0.01), but higher in the non-diabetic LA group. Arachidonic acid (20:4 n-6) levels were similar in the diabetes 1, D+VELAVC and control groups (P>0.05) but higher in the non-diabetic VE, VC, LA and VEVCLA groups (P<0.05) and lower in the diabetes 2 group (P<0.05). Docosahexaenoic acid (22:6 n-3) was elevated in the diabetes 2 and VEVCLA groups (P<0.01, P<0.05). In conclusion, the current study confirmed that treatment with a triple combination of VE, VC and LA protects the arachidonic acid level in the brains of diabetic and non-diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号