首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang Y  Weng X  Russu IM 《Biochemistry》2011,50(11):1857-1863
Proton exchange and nuclear magnetic resonance spectroscopy are being used to characterize the kinetics and energetics of base-pair opening in two nucleic acid double helices. One is the RNA duplex 5'-r(GCGAUAAAAAGGCC)-3'/5'-r(GGCCUUUUUAUCGC)-3', which contains a central tract of five AU base pairs. The other is the homologous DNA duplex with a central tract of five AT base pairs. The rates and the equilibrium constants of the opening reaction of each base pair are measured from the dependence of the exchange rates of imino protons on ammonia concentration, at 10 °C. The results reveal that the tract of AU base pairs in the RNA duplex differs from the homologous tract of AT base pairs in DNA in several ways. The rates of opening of AU base pairs in RNA are high and increase progressively along the tract, reaching their largest values at the 3'-end of the tract. In contrast, the opening rates of AT base pairs in DNA are much lower than those of AU base pairs. Within the tract, the largest opening rate is observed for the AT base pair at the 5'-end of the tract. These differences in opening kinetics are paralleled by differences in the stabilities of individual base pairs. All AU base pairs in the RNA are less stable than the AT base pairs in the DNA. The presence of the tract enhances these differences by increasing the stability of AT base pairs in DNA while decreasing the stability of AU base pairs in RNA. Due to these divergent trends, along the tracts, the AU base pairs become progressively less stable than AT base pairs. These findings demonstrate that tracts of AU base pairs in RNA have specific dynamic and energetic signatures that distinguish them from similar tracts of AT base pairs in DNA.  相似文献   

2.
The 8-aza-7-deazaadenine (pyrazolo[3,4-d]pyrimidin-4-amine) N(8)-(2'-deoxyribonucleoside) (2) which has an unusual glycosylation position was introduced as a universal nucleoside in oligonucleotide duplexes. These oligonucleotides were prepared by solid-phase synthesis employing phosphoramidite chemistry. Oligonucleotides incorporating the universal nucleoside 2 are capable of forming base pairs with the four normal DNA nucleosides without significant structural discrimination. The thermal stabilities of those duplexes are very similar and are only moderately reduced compared to those with regular Watson-Crick base pairs. The universal nucleoside 2 belongs to a new class of compounds that form bidentate base pairs with all four natural DNA constituents through hydrogen bonding. The base pair motifs follow the Watson-Crick or the Hoogsteen mode. Also an uncommon motif is suggested for the base pair of 2 and dG. All of the new base pairs have a different shape compared to those of the natural DNA but fit well into the DNA duplex as the distance of the anomeric carbons approximates those of the common DNA base pairs.  相似文献   

3.
We have characterized the role of Watson-Crick hydrogen bonding in the 3'-terminal base pair on the 3'-5' exonuclease activity of the human mitochondrial DNA polymerase. Nonpolar nucleoside analogs of thymidine (dF) and deoxyadenosine (dQ) were used to eliminate hydrogen bonds while maintaining base pair size and shape. Exonuclease reactions were examined using pre-steady state kinetic methods. The time dependence of removal of natural nucleotides from the primer terminus paired opposite the nonpolar analogs dF and dQ were best fit to a double exponential function. The double exponential kinetics as well as the rates of excision (3-6 s(-1) fast phase, 0.16-0.3 s(-1) slow phase) are comparable with those observed during mismatch removal of natural nucleotides even when the analog was involved in a sterically correct base pair. Additionally, incorporation of the next correct base beyond a nonpolar analog was slow (0.04-0.22 s(-1)), so that more than 95% of terminal base pairs were removed rather than extended. The polymerase responds to all 3'-terminal base pairs containing a nonpolar analog as if it were a mismatch regardless of the identity of the paired base, and kinetic partitioning between polymerase and exonuclease sites failed to discriminate between correct and incorrect base pairs. Thus, sterics alone are insufficient, whereas hydrogen bond formation is essential for proper proofreading selectivity by the mitochondrial polymerase. The enzyme may use the alignment and prevention of fraying provided by proper hydrogen bonding and minor groove hydrogen bonding interactions as critical criteria for correct base pair recognition.  相似文献   

4.
J K James  I Tinoco  Jr 《Nucleic acids research》1993,21(14):3287-3293
The solution structure of the DNA analogue of the unusually stable r[C(UUCG)G] RNA hairpin, 5'-d[GGA-C(TTCG)GTCC]-3', has been determined by NMR spectroscopy, and its structure has been compared to that of the RNA molecule. The RNA molecule is compact and rigid with a highly structured loop. However, the DNA molecule is much less structured. The DNA hairpin contains a B-form stem of four base pairs. The terminal base pair frays, and the 3'-terminal nucleotides, C11 and C12, are in equilibrium between 2'-endo and 3'-endo conformations. Unlike the RNA loop, the DNA loop contains no syn nucleotides, and there is no evidence for base-base or base-phosphate hydrogen bonding in the loop. The loop is flexible, and reveals no specific internucleotide interactions.  相似文献   

5.
Guanine-uracil (G.U) wobble base-pairs are a detrimental lesion in DNA. Previous investigations have shown that such wobble base-pairs are more prone to base-opening than the normal G.C base-pairs. To investigate the sequence-dependence of base-pair opening we have performed 5ns molecular dynamics simulations on G.U wobble base-pairs in two different sequence contexts, TGT/AUA and CGC/GUG. Furthermore, we have investigated the effect of replacing the guanine base in each sequence with a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Our results indicate that each sequence opens spontaneously towards the major groove in the course of the simulations. The TGT/AUA sequence has a greater proportion of structures in the open state than the CGC/GUG sequence. Incorporation of 6MI yields wobble base-pairs that open more readily than their guanine counterparts. In order of increasing open population, the sequences are ordered as CGC相似文献   

6.
Every AE  Russu IM 《Biopolymers》2007,87(2-3):165-173
Aromatic stacking and hydrogen bonding between nucleobases are two of the key interactions responsible for stabilization of DNA double-helical structures. The present work aims at defining the specific contributions of these interactions to the stability of individual base pairs in DNA. The two DNA double helices investigated are formed, respectively, by the palindromic base sequences 5'-dCCAACGTTGG-3' and 5'-dCGCAGATCTGCG-3'. The strength of the N==H...N inter-base hydrogen bond in each base pair is characterized from the measurement of the protium-deuterium fractionation factor of the corresponding imino proton using NMR spectroscopy. The structural stability of each base pair is evaluated from the exchange rate of the imino proton, measured by NMR. The results reveal that the fractionation factors of the imino protons in the two DNA double helices investigated fall within a narrow range of values, between 0.92 and 1.0. In contrast, the free energies of structural stabilization for individual base pairs span 3.5 kcal/mol, from 5.2 to 8.7 kcal/mol (at 15 degrees C). These findings indicate that, in the two DNA double helices investigated, the strength of N==H...N inter-base hydrogen bonds does not change significantly depending on the nature or the sequence context of the base pair. Hence, the variations in structural stability detected by proton exchange do not involve changes in the strength of inter-base hydrogen bonds. Instead, the results suggest that the energetic identity of a base pair is determined by the number of inter-base hydrogen bonds, and by the stacking interactions with neighboring base pairs.  相似文献   

7.
8.
Triplex-mediated recognition of Py.Pu base pairs in DNA is a greater challenge than for Pu.Py base pairs as fewer hydrogen bonds are presented for binding in the major groove. Initial studies on m-aminophenyl-modified analogues of the bicyclic nucleoside N-methyl-3H-pyrrolo[2,3-d]pyrimidin-2(7 H)-one suggest that selective recognition of the CG base pair is possible.  相似文献   

9.
Structure and energetic properties of base pair mismatches in duplex RNA have been the focus of numerous investigations due to their role in many important biological functions. Such efforts have contributed to the development of models for secondary structure prediction of RNA, including the nearest-neighbor model. In RNA duplexes containing GU mismatches, 5'-GU-3' tandem mismatches have a different thermodynamic stability than 5'-UG-3' mismatches. In addition, 5'-GU-3' mismatches in some sequence contexts do not follow the nearest-neighbor model for stability. To characterize the underlying atomic forces that determine the structural and thermodynamic properties of GU tandem mismatches, molecular dynamics (MD) simulations were performed on a series of 5'-GU-3' and 5'-UG-3' duplexes in different sequence contexts. Overall, the MD-derived structural models agree well with experimental data, including local deviations in base step helicoidal parameters in the region of the GU mismatches and the model where duplex stability is associated with the pattern of GU hydrogen bonding. Further analysis of the simulations, validated by data from quantum mechanical calculations, suggests that the experimentally observed differences in thermodynamic stability are dominated by GG interstrand followed by GU intrastrand base stacking interactions that dictate the one versus two hydrogen bonding scenarios for the GU pairs. In addition, the inability of 5'-GU-3' mismatches in different sequence contexts to all fit into the nearest-neighbor model is indicated to be associated with interactions of the central four base pairs with the surrounding base pairs. The results emphasize the role of GG and GU stacking interactions on the structure and thermodynamics of GU mismatches in RNA.  相似文献   

10.
Morales JC  Kool ET 《Biochemistry》2000,39(42):12979-12988
Recent studies have identified amino acid side chains forming several hydrogen bonds in the DNA minor groove as potentially important in polymerase replication of DNA. Few studies have probed these interactions on the DNA itself. Using non-hydrogen-bonding nucleoside isosteres, we have now studied effects in both primer and template strands with several polymerases to investigate the general importance of these interactions. All six polymerases show differences in the H-bonding effects in the minor groove. Two broad classes of activity are seen, with a first group of DNA polymerases (KF(-), Taq, and HIV-RT) that efficiently extends nonpolar base pairs containing nucleoside Q (9-methyl-1H-imidazo[4,5-b]pyridine) but not the analogue Z (4-methylbenzimidazole), implicating a specific minor groove interaction at the first extension site. A second group of polymerases (Pol alpha, Pol beta, and T7(-)) fails to extend all non-H-bonding base pairs, indicating that these enzymes may need minor groove hydrogen bonds at both minor groove sites or that they are especially sensitive to noncanonical DNA structure or stability. All DNA polymerases examined use energetically important minor groove interactions to probe newly synthesized base pairs before extending them. The positions of these interactions vary among the enzymes, and only a subset of the interactions identified structurally appears to be functionally important. In addition, polymerases appear to be differently sensitive to small changes in base pair geometry.  相似文献   

11.
Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment of promoter elements controlled by the yeast genes ste11 and Rox1 has indicated strict conservation of a larger DNA motif. By site selection, we identify a highly specific 12-base pair motif for Ste11, AGAACAAAGAAA. Similarly, we show that Tcf1, MatMc, and Sox4 bind unique, highly specific DNA motifs of 12, 12, and 10 base pairs, respectively. Footprinting with a deletion mutant of Ste11 reveals a novel interaction between the 3' base pairs of the extended DNA motif and amino acids C-terminal to the HMG domain. The sequence-specific interaction of Ste11 with these 3' base pairs contributes significantly to binding and bending of the DNA motif.  相似文献   

12.
Upon binding to the 15.5K protein, two tandem-sheared G–A base pairs are formed in the internal loop of the kink-turn motif of U4 snRNA (Kt-U4). We have reported that the folding of Kt-U4 is assisted by protein binding. Unstable interactions that contribute to a large opening of the free RNA (‘k–e motion’) were identified using locally enhanced sampling molecular dynamics simulations, results that agree with experiments. A detailed analysis of the simulations reveals that the k–e motion in Kt-U4 is triggered both by loss of G–A base pairs in the internal loop and backbone flexibility in the stems. Essential dynamics show that the loss of G–A base pairs is correlated along the first mode but anti-correlated along the third mode with the k–e motion. Moreover, when enhanced sampling was confined to the internal loop, the RNA adopted an alternative conformation characterized by a sharper kink, opening of G–A base pairs and modified stacking interactions. Thus, loss of G–A base pairs is insufficient for achieving a large opening of the free RNA. These findings, supported by previously published RNA structure probing experiments, suggest that G–A base pair formation occurs upon protein binding, thereby stabilizing a selective orientation of the stems.  相似文献   

13.
The human 15.5K protein binds to the 5' stem-loop of U4 snRNA, promotes the assembly of the spliceosomal U4/U6 snRNP, and is required for the recruitment of the 61K protein and the 20/60/90K protein complex to the U4 snRNA. In the crystallographic structure of the 15.5K-U4 snRNA complex, the conformation of the RNA corresponds to the family of kink-turn (K-turn) structural motifs. We simulated the complex and the free RNA, showing how the protein binding and the intrinsic flexibility contribute to the RNA folding process. We found that the RNA is significantly more flexible in the absence of the 15.5K protein. Conformational transitions such as the interconversion between alternative purine stacking schemes, the loss of G-A base pairs, and the opening of the K-turn occur only in the free RNA. Furthermore, the stability of one canonical G-C base pair is influenced both by the binding of the 15.5K protein and the nature of the adjacent structural element in the RNA. We performed chemical RNA modification experiments and observed that the free RNA lacks secondary structure elements, a result in excellent agreement with the simulations. Based on these observations, we propose a protein-assisted RNA folding mechanism in which the RNA intrinsic flexibility functions as a catalyst.  相似文献   

14.
The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580].  相似文献   

15.
Expression of replication-dependent histone genes requires a conserved hairpin RNA element in the 3' untranslated regions of poly(A)-less histone mRNAs. The 3' hairpin element is recognized by the hairpin-binding protein or stem-loop-binding protein (HBP/SLBP). This protein-RNA interaction is important for the endonucleolytic cleavage generating the mature mRNA 3' end. The 3' hairpin and presumably HBP/SLBP are also required for nucleocytoplasmic transport, translation, and stability of histone mRNAs. RNA 3' processing and mRNA stability are both regulated during the cell cycle. Here, we have determined the three-dimensional structure of a 24-mer RNA comprising a mammalian histone RNA hairpin using heteronuclear multidimensional NMR spectroscopy. The hairpin adopts a novel UUUC tetraloop conformation that is stabilized by base stacking involving the first and third loop uridines and a closing U-A base pair, and by hydrogen bonding between the first and third uridines in the tetraloop. The HBP interaction of hairpin RNA variants was analyzed in band shift experiments. Particularly important interactions for HBP recognition are mediated by the closing U-A base pair and the first and third loop uridines, whose Watson-Crick functional groups are exposed towards the major groove of the RNA hairpin. The results obtained provide novel structural insight into the interaction of the histone 3' hairpin with HBP, and thus the regulation of histone mRNA metabolism.  相似文献   

16.
The crystal structure of the 19-mer RNA, 5'-GAAUGCCUGCGAGCAUCCC-3' has been determined from X-ray diffraction data to 1.6 A resolution by the multiwavelength anomalous diffraction method from crystals containing a brominated uridine. In the crystal, this RNA forms an 18-mer self-complementary double helix with the 19th nucleotide flipped out of the helix. This helix contains most of the target stem recognized by the bacteriophage Mu Com protein (control of mom), which activates translation of an unusual DNA modification enzyme, Mom. The 19-mer duplex, which contains one A.C mismatch and one A.C/G.U tandem wobble pair, was shown to bind to the Com protein by native gel electrophoresis shift assay. Comparison of the geometries and base stacking properties between Watson-Crick base pairs and the mismatches in the crystal structure suggest that both hydrogen bonding and base stacking are important for stabilizing these mismatched base pairs, and that the unusual geometry adopted by the A.C mismatch may reveal a unique structural motif required for the function of Com.  相似文献   

17.
The crystal structure of the self-complementary chimeric decamer duplex r(C)d(CGGCGCCG)r(G), with RNA base pairs at both termini, has been solved at 1.9 A resolution by the molecular replacement method and refined to an R value of 0.145 for 2,314 reflections. The C3'-endo sugar puckers of the terminal riboses apparently drive the entire chimeric duplex into an A-DNA conformation, in contrast to the B-DNA conformation adopted by the all-deoxy decamer of the same sequence. Five symmetry related duplexes encapsulate a spermine molecule which interacts with ten phosphate groups, both directly and through water molecules to form multiple ionic and hydrogen bonding interactions. The spermine interaction severely bends the duplexes by 31 degrees into the major groove at the fourth base pair G(4).C(17), jolts it and slides the 'base plate' into the minor groove. This base pair, together with the adjacent base pair in the top half and the corresponding pseudo two-fold related base pairs in the bottom half, form four minor groove base-paired multiples with the terminal base pairs of two neighboring duplexes.  相似文献   

18.
To provide insights into the unusual properties of 2',5' nucleic acids (iso nucleic acids), that includes their rejection by Nature as information molecules, modeling studies have been carried out to examine if they indeed possess the stereochemical ability to form helical duplexes and triplexes, just as their 3',5' linked constitutional isomers. The results show that the formation of helical duplexes with 2',5' linkages demands a mandatory displacement of the Watson and Crick base pairs from the helical axis, as a direct consequence of the lateral shift of the sugar-phosphate backbone from the periphery towards the interior of the helix. Thus, both duplexes and triplexes formed with a 2',5'-sugar-phosphate backbone possess this intrinsic trait, manifested normally only in A type duplexes of DNA and RNA. It was found that only a 10-fold symmetric parallel triplex with isomorphous T.AT triplets is stereochemically favorable for isoDNA with 'extended' nucleotide repeats, unlike the 12-fold symmetric triplex favored by DNA. The wider nature of a 12-fold triplex, concomitant with mandatory slide requirement for helix formation in isoDNA, demands even larger displacement, especially with 'extended' nucleotide structural repeats, thereby violating symmetry. However, a symmetric triplex possessing higher twist, can be naturally formed for isoDNA with a 'compact' nucleotide repeat. Two nanosecond molecular dynamics simulation of a 2',5'-B DNA duplex, formed with an intrinsic base pair displacement of -3.3 A, does not seem to favor a total transition to a typical A type duplex, although enhanced slide, X-displacement, decrease in helical rise and narrowing of the major groove during simulation seem to indicate a trend. Modeling of the interaction between the chimeric isoDNA.RNA duplex and E. coli RNase H has provided a structural basis for the inhibitory action of the enzyme. Interaction of residues Gln 80, Trp 81, Asn 16 and Lys 99, of E. coli RNase H with DNA of the DNA.RNA hybrid, are lost when the DNA backbone is replaced by isoDNA. Based on modeling and experimental observations, it is argued that 2',5' nucleic acids possess restricted conformational flexibility for helical polymorphism. The inability of isoDNA to favor the biologically relevant B form duplex and the associated topological inadequacies related to nucleic acid compaction and interactions with regulatory proteins may be some of the factors that might have led to the rejection of 2',5' links.  相似文献   

19.
Structures of multisubunit RNA polymerases strongly differ from the many known structures of single subunit DNA and RNA polymerases. However, in functional complexes of these diverse enzymes, nucleic acids take a similar course through the active center. This finding allows superposition of diverse polymerases and reveals features that are functionally equivalent. The entering DNA duplex is bent by almost 90 degrees with respect to the exiting template-product duplex. At the point of bending, a dramatic twist between subsequent DNA template bases aligns the "coding" base with the binding site for the incoming nucleoside triphosphate (NTP). The NTP enters through an opening that is found in all polymerases, and, in most cases, binds between an alpha-helix and two catalytic metal ions. Subsequent phosphodiester bond formation adds a new base pair to the exiting template-product duplex, which is always bound from the minor groove side. All polymerases may undergo "induced fit" upon nucleic acid binding, but the underlying conformational changes differ.  相似文献   

20.
Sequence-dependent structural features of the DNA double helix have a strong influence on the base pair opening dynamics. Here we report a detailed study of the kinetics of base pair breathing in tracts of GC base pairs in DNA duplexes derived from 1H NMR measurements of the imino proton exchange rates upon titration with the exchange catalyst ammonia. In the limit of infinite exchange catalyst concentration, the exchange times of the guanine imino protons of the GC tracts extrapolate to much shorter base pair lifetimes than commonly observed for isolated GC base pairs. The base pair lifetimes in the GC tracts are below 5 ms for almost all of the base pairs. The unusually rapid base pair opening dynamics of GC tracts are in striking contrast to the behavior of AT tracts, where very long base pair lifetimes are observed. The implication of these findings for the structural principles governing spontaneous helix opening as well as the DNA-binding specificity of the cytosine-5-methyltransferases, where flipping of the cytosine base has been observed, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号