首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xenin is a 25 amino acid peptide produced by specific endocrine cells of the duodenal mucosa. Xenin has multiple biological actions in the gastrointestinal tract. It modulates intestinal motility, affects exocrine pancreatic secretion, and gastric secretion of acid. In the present investigation, we studied plasma concentration of xenin in volunteers after modified sham feeding and after meals of different composition. Plasma xenin concentrations were determined by radioimmunoassay in unextracted plasmas and after acidic extraction using C-18 Sep-Pak chromatography and after neutral extraction using affinity filtration. Both extraction methods were followed by C 18 r.p. HPLC chromatography. Xenin plasma concentrations in unextracted and in extracted plasma rose significantly after modified sham feeding when the food was brought to the volunteers from another room immediately before sham feeding started. When the volunteers had the opportunity to observe the preparation of the meal, xenin plasma concentrations during fasting were high and no further rise was observed after sham feeding. Isocaloric feeding resulted in elevated xenin concentrations in unextracted plasma and after high-pressure liquid chromatography. The methods of extraction, acidic or neutral, did not affect the results. CONCLUSION: Cephalic factors, investigated by modified sham feeding, stimulate release of xenin into the circulation. Xenin may participate in the central nervous regulation of gastrointestinal function.  相似文献   

2.
Xenin is a peptide that is co-secreted with the incretin hormone, glucose-dependent insulinotropic polypeptide (GIP), from intestinal K-cells in response to feeding. Studies demonstrate that xenin has appetite suppressive effects and modulates glucose-induced insulin secretion. The present study was undertaken to determine the bioactivity and antidiabetic properties of two C-terminal fragment xenin peptides, namely xenin 18–25 and xenin 18–25 Gln. In BRIN-BD11 cells, both xenin fragment peptides concentration-dependently stimulated insulin secretion, with similar efficacy as the parent peptide. Neither fragment peptide had any effect on acute feeding behaviour at elevated doses of 500 nmol/kg bw. When administered together with glucose to normal mice at 25 nmol/kg bw, the overall insulin secretory effect was significantly enhanced in both xenin 18–25 and xenin 18–25 Gln treated mice, with better moderation of blood glucose levels. Twice daily administration of xenin 18–25 or xenin 18–25 Gln for 21 days in high fat fed mice did not affect energy intake, body weight, circulating blood glucose or body fat stores. However, circulating plasma insulin concentrations had a tendency to be elevated, particularly in xenin 18–25 Gln mice. Both treatment regimens significantly improved insulin sensitivity by the end of the treatment period. In addition, sustained treatment with xenin 18–25 Gln significantly reduced the overall glycaemic excursion and augmented the insulinotropic response to an exogenous glucose challenge on day 21. In harmony with this, GIP-mediated glucose-lowering and insulin-releasing effects were substantially improved by twice daily xenin 18–25 Gln treatment. Overall, these data provide evidence that C-terminal octapeptide fragments of xenin, such as xenin 18–25 Gln, have potential therapeutic utility for type 2 diabetes.  相似文献   

3.
Xenin, a 25 amino acid peptide, interacts with the neurotensin receptor subtype 1 of intestinal muscles of the guinea pig. Replacement of the C-terminal Lys-Arg peptide bond in xenin 6 by a reduced pseudo-peptide bond augmented binding affinity to isolated jejunal and colonic muscle membranes by factors of 7.7 and 21.0 respectively; the potency to contract the jejunum and to relax the colon was increased by factors of 3.2 and 1.3. The C-terminus Trp-Ile-Leu (WIL) of xenin, in contrast to the C-terminus Tyr-Ile-Leu (YIL) of neurotensin, bound competitively to the muscle membranes. WIL blocked the contractile action of xenin in the jejunum and was synergistic with the relaxing action in the colon. The Lys-Arg motif and Trp in the C-terminus of xenin are essential structures in the action of xenin on the enteral smooth muscle receptors.  相似文献   

4.
Xenin, a 25 aminoacid peptide, interacts with the neurotensin receptor subtype 1 of intestinal muscles of the guinea pig. Replacement of the C-terminal Lys -Arg peptide bond in xenin 6 by a reduced pseudo-peptide bond augmented binding affinity to isolated jejunal and colonic muscle membranes by factors of 7.7 and 21.0 respectively; the potency to contract the jejunum and to relax the colon was increased by factors of 3.2 and 1.3. The C-terminus Trp-Ile-Leu (WIL) of xenin, in contrast to the C-terminus Tyr-Ile-Leu (YIL) of neurotensin, bound competitively to the muscle membranes. WIL blocked the contractile action of xenin in the jejunum and was synergistic with the relaxing action in the colon. The Lys -Arg motif and Trp in the C-terminus of xenin are essential structures in the action of xenin on the enteral smooth muscle receptors.  相似文献   

5.
Xenin is a 25-amino-acid peptide extractable from mammalian tissue. This peptide is biologically active. It stimulates exocrine pancreatic secretion and intestinal motility and inhibits gastric secretion of acid and food intake. Xenin circulates in the human plasma after meals. In this study, the cellular origin of xenin in the gastro-entero-pancreatic system of humans, Rhesus monkeys, and dogs was investigated by immunohistochemistry and immunoelectron microscopy. Sequence-specific antibodies against xenin detected specific endocrine cells in the duodenal and jejunal mucosa of all three species. These xenin-immunoreactive cells were distinct from enterochromaffin, somatostatin, motilin, cholecystokinin, neurotensin, and secretin cells, and comprised 8.8% of the chromogranin A-positive cells in the dog duodenum and 4.6% of the chromogranin A-positive cells in human duodenum. In all three species, co-localization of xenin was found with a subpopulation of gastric inhibitory polypeptide (GIP)-immunoreactive cells. Immunoelectron microscopy in the canine duodenal mucosa demonstrated accumulation of gold particles in round, homogeneous, and osmiophilic secretory granules with a closely adhering membrane of 187 +/- 19 nm diameter (mean +/- SEM). This cell type was found to be identical to the previously described canine GIP cell. Immunocytochemical expression of the peptide xenin in a subpopulation of chromogranin A-positive cells as well as the localization of xenin immunoreactivity in ultrastructurally characterized secretory granules permitted the identification of a novel endocrine cell type as the cellular source of circulating xenin.  相似文献   

6.
Xenin is a 25-amino acid peptide of the neurotensin/xenopsin family identified in gastric mucosa as well as in a number of tissues, including the pancreas of various mammals. In healthy subjects, plasma xenin immunoreactivity increases after meals. Infusion of the synthetic peptide in dogs evokes a rise in plasma insulin and glucagon levels and stimulates exocrine pancreatic secretion. The latter effect has also been demonstrated for xenin-8, the C-terminal octapeptide of xenin. We have investigated the effect of xenin-8 on insulin, glucagon and somatostatin secretion in the perfused rat pancreas. Xenin-8 stimulated basal insulin secretion and potentiated the insulin response to glucose in a dose-dependent manner (EC(50)=0.16 nM; R(2)=0.9955). Arginine-induced insulin release was also augmented by xenin-8 (by 40%; p<0.05). Xenin-8 potentiated the glucagon responses to both arginine (by 60%; p<0.05) and carbachol (by 50%; p<0.05) and counteracted the inhibition of glucagon release induced by increasing the glucose concentration. No effect of xenin-8 on somatostatin output was observed. Our observations indicate that the reported increases in plasma insulin and glucagon levels induced by xenin represent a direct influence of this peptide on the pancreatic B and A cells.  相似文献   

7.
Xenin is a 25‐amino acid peptide highly homologous to neurotensin. Xenin and neurotensin are reported to have similar biological effects. Both reduce food intake when administered centrally to fasted rats. We aimed to clarify and compare the effects of these peptides on food intake and behavior. We confirm that intracerebroventricular (ICV) administration of xenin or neurotensin reduces food intake in fasted rats, and demonstrate that both reduce food intake in satiated rats during the dark phase. Xenin reduced food intake more potently than neurotensin following ICV administration. ICV injection of either peptide in the dark phase increased resting behavior. Xenin and neurotensin stimulated the release of corticotrophin‐releasing hormone (CRH) from ex vivo hypothalamic explants, and administration of α‐helical CRH attenuated their effects on food intake. Intraperitoneal (IP) administration of xenin or neurotensin acutely reduced food intake in fasted mice and ad libitum fed mice in the dark phase. However, chronic continuous or twice daily peripheral administration of xenin or neurotensin to mice had no significant effect on daily food intake or body weight. These studies confirm that ICV xenin or neurotensin can acutely reduce food intake and demonstrate that peripheral administration of xenin and neurotensin also reduces food intake. This may be partly mediated by changes in hypothalamic CRH release. The lack of chronic effects on body weight observed in our experiments suggests that xenin and neurotensin are unlikely to be useful as obesity therapies.  相似文献   

8.
A stimulatory effect on exocrine pancreas secretion could be demonstrated with high concentrations of the 25-amino-acid peptide xenin in non-anesthetized dogs. This peptide has been isolated from gastric mucosa and it is part of a structural coat protein. It has close structural similarities to neurotensin. The longer C-terminal fragments xenin-(13--25) and xenin-(18--25) are essential for the stimulation of exocrine pancreas secretion in vivo. The smaller peptide fragments xenin-(21--25) and xenin-(22--25) failed to stimulate the pancreas as well as the N-terminal peptide fragment xenin-(1--23). The stimulatory effects of xenin may be mediated via neural neurotensin pathways, because neurotensin receptor blockade abolished the stimulatory effect on pancreatic secretion. Cholinergic pathways are not involved, because atropine had no inhibiting effect.  相似文献   

9.
One of the peptides previously discovered in amphibians is the octapeptide xenopsin. As immunohistochemistry has also indicated the presence of xenopsin immunoreactivity in man, we extracted in the present investigation xenopsin-immunoreactive material from human gastric mucosa and purified it to homogeneity with several high performance liquid chromatography (HPLC) reverse phase and ion exchange chromatographic steps. The eluates were monitored with a radioimmunoassay for amphibian xenopsin. Determination of the amino acid sequence revealed a 25-amino acid peptide having 6 C-terminal amino acids in common with amphibian xenopsin. The sequence of this peptide, termed xenin 25, is M-L-T-K-F-E-T-K-S-A-R-V-K-G-L-S-F-H-P-K-R-P-W-I-L. The peptide was custom-synthesized. Mass spectrometry of the synthetic and the extracted peptide revealed identical molecular mass. Purification of 250 ml of human postprandial plasma with Sep-Pak C18 cartridges, reverse phase HPLC, and ion exchange chromatography demonstrated circulating xenin immunoreactivity at a retention time identical to xenin 25. The amount of xenin immunoreactivity at the position of xenin 25 on C18-HPLC increased significantly after a meal. A radioimmunoassay utilizing antibodies to xenin 25 and a 125I-labeled analogue of xenin 25 was used to measure immunoreactive xenin in the plasma of 10 volunteers. There was a significant rise of xenin immunoreactivity in the plasma after a meal. Intravenous infusion of the synthetic peptide in dogs stimulated exocrine pancreatic secretion beginning at a dose of 4 pmol/kg/min. The maximal effect was seen with 64 pmol/kg/min. We have detected, therefore, a new peptide, xenin 25, in human gastric mucosa; we have provided evidence for the presence of this peptide in the human circulation, and have shown a rise of plasma xenin concentrations after a meal. This peptide stimulates exocrine pancreatic secretion. Its physiologic role deserves further investigation.  相似文献   

10.
Xenin (1-25) has been detected in various locations in mammalians. It has structural similarities with neurotensin and its intestinal effects are claimed to be mediated by neurotensin receptors. It has been shown to influence gastrointestinal motility. The effects of xenin (1-25) on intestinal microvascular perfusion after ischemia/reperfusion have not been investigated yet. Therefore, the superior mesenteric artery was clamped for 40 min in Wistar rats (n=8). Ten minutes prior to reperfusion, intravenous infusion of xenin (1-25) (5 nmol/kg/h) was started. By means of intravital microscopy, microvascular perfusion in the mucosal layer was assessed. Animals (n=8) with and without clamping of the superior mesenteric artery and infusion of the carrier solution served as controls.After ischemia/reperfusion, xenin (1-25) increased the density of perfused microvessels and the capillary red blood cell velocity compared to ischemic controls. Capillary red blood cell velocity was elevated (p<0.05). Xenin (1-25) improved the heterogeneous distribution of mucosal blood flow during reperfusion demonstrated by an increase of both the perfusion index and the percentage of perfused microvessels.We conclude that the effects of xenin (1-25) on intestinal microcirculation are significantly different from those previously described for neurotensin. A more complex effector mechanism must be postulated that may involve other regulatory peptides and receptors.  相似文献   

11.
The effects on pancreatic responses of highly potent cyclic hexapeptide (cyclo (N-Me-Ala-Phe-D-Trp-Lys-Thr-Phe)) (Veber analog) and octapeptide analogs of somatostatin such as D-Phe-Cys-Phe-D-Trp-Lys-Thr-Cys-Thr-ol (SMS 201-995), D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2 (RC-121), and D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Trp-NH2 (RC-160) have been compared with somatostatin tetradecapeptide (SS-14) and atropine. The parameters evaluated were pancreatic responses to secretin and meat feeding in conscious dogs with chronic pancreatic fistula and amylase release from the dispersed pancreatic acini. The analogs were administered intravenously or intraduodenally. The cyclic hexapeptide and octapeptide analogs, given iv in graded doses against a constant background stimulation with secretin, produced similar and dose-dependent inhibition of pancreatic HCO3- and protein secretion. Analogs RC-121, RC-160, and the Veber analog were about two to four times more active than SS-14 in suppressing HCO3- secretion and equipotent in reducing protein secretion, but SMS 201-995 was only about half as potent as somatostatin in inhibiting HCO3-. RC-160 was effective in inhibiting secretin-induced protein secretion at lower doses than other analogs. In tests with feeding, SMS 201-995, the Veber analog, RC-121, and RC-160 were more potent inhibitors of exocrine pancreatic secretion of HCO3- and protein and exhibited more prolonged inhibitory effects than SS-14. The Veber analog, RC-121, and RC-160 were also more effective after intraduodenal administration. Atropine also caused significant inhibition of both HCO3- and protein responses to secretin and meal feeding. All four analogs decreased the postprandial insulin and pancreatic polypeptide release to a similar degree as SS-14. Neither SS-14 nor the analogs tested significantly affected basal or caerulein-, gastrin-, secretin-, or bethanechol-stimulated amylase release from the dispersed canine pancreatic acini. Atropine reduced amylase release induced by bethanechol, but not that stimulated by caerulein, gastrin, or secretin. This indicated that the analogs, as somatostatin, are ineffective as secretory inhibitors in vitro. We conclude that cyclic hexapeptide and octapeptide analogs are more potent and longer acting inhibitors of pancreatic secretion than somatostatin-14 in vivo.  相似文献   

12.
The isolation of bombesin-related peptides in chicken proventriculus was monitored by radioimmunoassay using a C-terminal specific bombesin antibody. Two peptides were identified, one corresponded to the 27-residue, chicken gastrin-releasing peptide (GRP-27) previously identified; the other corresponded to its C-terminal hexapeptide. Chicken GRP-27 stimulated pancreatic and gastric acid secretion in anaesthetized turkeys, but the hexapeptide was inactive. No evidence could be found to suggest that the hexapeptide was an artifact of degradation generated during extraction or isolation. It is proposed that the hexapeptide is produced either by chymotryptic-like cleavage of GRP-27 or by trypsin-like cleavage followed by two cycles of dipeptidylaminopeptidase cleavage. This type of biosynthetic processing may be more common than formerly supposed.  相似文献   

13.
Xenin is a regulatory peptide first isolated from the human gastric mucosa. Using an open-access protein database MEDLINE (33 million molecules; 11 billion amino acid residues) and our original computer program, we conducted a search for the xenin motifs in the primary structure of proteins across almost the entire taxonomic range of evolution. Motifs with 40% homology to human xenin are already present in prokaryotes. Homology reaches 84–96% in single-cell algae and plants, becoming complete since bony fishes. We suppose that this regulatory peptide is more ancient and significant than is usually thought.  相似文献   

14.
The effects of a cyclic hexapeptide analog of somatostatin, [cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe)] (cyclo-SS), administered intravenously (iv) or instilled into the duodenum (id) on the pancreatic response to endogenous (meal and duodenal acidification) and exogenous (secretin, CCK) stimulants were compared in five dogs with esophageal, gastric, and pancreatic fistulae. Cyclo-SS given iv in graded doses against a constant background stimulation with secretin caused a similar and dose-dependent inhibition of pancreatic HCO3 and protein secretion being about twice as potent as somatostatin-14 (SS-14). Cyclo-SS, whether applied topically to the duodenal mucosa in a dose of 1 microgram/kg or given iv at a dose of 0.5 microgram/kg-hr, resulted in a similar inhibition of pancreatic secretion induced by feeding a meat meal, sham-feeding, duodenal acidification, or infusion of secretin or CCK. The inhibition of pancreatic secretion by cyclo-SS was due in part to direct inhibitory action on the exocrine pancreas as well as to the suppression of the release of secretin, insulin, and pancreatic polypeptide. It is concluded that cyclo-SS is a more potent inhibitor of pancreatic secretion than SS-14 and that it is active when administered both parenterally and intraduodenally.  相似文献   

15.
Effects of synthetic rat pancreastatin C-terminal fragment on both exocrine and endocrine pancreatic functions were examined in rats, in vivo and in vitro. Pancreastatin (20, 100 pmol, 1 nmol/kg/h) significantly inhibited CCK-8-stimulated pancreatic juice flow and protein output in a dose-related manner, in vivo. The inhibitory effect on bicarbonate output was not statistically significant. Pancreastatin did not significantly inhibit basal pancreatic secretions in vivo, and did not inhibit amylase release from the dispersed acini, in vitro. Insulin release stimulated by intragastric administration of glucose (5 g/kg) was significantly inhibited by pancreastatin (1 nmol/kg/h), in vivo. Plasma glucose concentrations were increased by pancreastatin infusion, but the increase was not statistically significant. Furthermore, pancreastatin inhibited insulin release from isolated islets, in vitro. Synthetic rat C-terminal pancreastatin fragment has bioactivities on both exocrine and endocrine pancreatic functions in rats.  相似文献   

16.
The synthesis of six hexapeptide analogues of C-terminal Substance P fragment containing alpha, beta-dehydrophenylalanine (delta Phe) in the position 7 or 8 is described. The effect of the structural changes on the hypotensive activity and antigenic properties of analogues was compared. It was found that substitution of delta Phe in various analogues of C-terminal hexapeptide of Substance P resulted in different effects on the hypotensive activity. The analogues [Glp6, delta Phe7]SP6-11 and [Glp6, delta Phe8]SP6-11 retained 70% and 45% of hypotensive activity of the C-terminal hexapeptide of Substance P, respectively but they showed a completely destroyed antigenic determinant. The analogues containing additionally Sar or His in the position 9 showed a complete lack of both: hypotensive activity and expression of the antigenic determinant of Substance P.  相似文献   

17.
Using a radioimmunoassay specific for porcine glicentin C-terminal hexapeptide, we isolated a peptide from porcine pancreas and characterized it as the C-terminal 64-69 sequence of glicentin: H-Asn-Lys-Asn-Asn-Ile-Ala-OH. The purification steps included gel filtration, ion-exchange chromatography and HPLC. In each step, the recovery of the desired peptide, radioimmunologically estimated from the respective elution profile, was 71.4-91.7%. The final yield of the hexapeptide was 22 micrograms (4.3%) from 800 g pancreas. The pancreatic content of this peptide was estimated to be approximately equimolar to that of pancreatic glucagon. No hexapeptide-like component was detected in porcine intestinal extracts. The data confirmed that the processing of pancreatic proglucagon liberates the C-terminal hexapeptide of the intramolecular glicentin sequence in a tissue-specific manner during the production of glucagon.  相似文献   

18.
SifA is a Salmonella typhimurium effector protein that is translocated across the membrane of the Salmonella-containing vacuole by the Salmonella pathogenicity island 2-encoded type III secretion system. SifA is necessary for the formation of Salmonella-induced filaments and for the maintenance of the vacuolar membrane enclosing the pathogen. We have investigated the role of the C-terminal hexapeptide of SifA as a potential site for membrane anchoring. An S. typhimurium strain carrying a deletion of the sequence encoding this hexapeptide (sifA Delta 6) was found to be attenuated for systemic virulence in mice. In mouse macrophages, sifA Delta 6 mutant bacteria displayed a reduced association with vacuolar markers, similar to that of sifA null mutant bacteria, and exhibited a dramatic replication defect. Expression of SifA in epithelial cells results in the mobilization of lysosomal glycoproteins in large vesicular structures and Sif-like tubules. This process requires the presence of the C-terminal hexapeptide domain of SifA. Ectopic expression of truncated or mutated versions of SifA affecting the C-terminal hexapeptide revealed a strong correlation between the membrane binding capability and the biological activity of the protein. Finally, the eleven C-terminal residues of SifA are shown to be sufficient to target the Aequorea green fluorescent protein to membranes. Altogether, our results indicate that membrane anchoring of SifA requires its C-terminal hexapeptide domain, which is important for the biological function of this bacterial effector.  相似文献   

19.
The effect of intravenous infusion of neurotensin (NT) and NT-fragments on pentagastrin stimulated gastric acid secretion was investigated in healthy subjects. Neurotensin was infused in three doses (72, 144 and 288 pmol/kg per h). An N-terminal fragment (NT 1-8), a C-terminal fragment (NT 8-13) and an NT-analogue, substituted at the C-terminal tyrosine residue (Phe11-NT) were infused in two doses (72 and 144 pmol/kg per h). Concentrations of the infused peptides were measured in peripheral venous blood by radioimmunoassay. Plasma levels of NT 1-13, NT 1-8 and Phe11-NT increased in a dose-dependent manner; NT 1-13 to 50 (34-69), 78 (54-113) and 143 (112-242) pmol/l (medians and range) at 72, 144 and 288 pmol/kg per h, NT 1-8 to 405 (340-465) and 1215 (915-1300) pmol/l, and Phe11-NT to 200 (110-245) and 390 (250-410) pmol/l at 72 and 144 pmol/kg per h, respectively. Increases in plasma levels of NT 8-13 could not be detected during the infusion, suggesting that the fragment is rapidly metabolized in man. Neurotensin 1-13 inhibited gastric acid secretion in a dose-dependent manner and the decrease in gastric acid secretion was linearly related to plasma levels of NT 1-13. Neurotensin 1-8 and NT 8-13 inhibited gastric acid secretion only at 144 pmol/kg per h, while the analogue Phe11-NT had no effect. The results showed that the inhibition of gastric acid secretion produced by NT was dose-dependent and linearly related to circulating levels of NT, and that under physiological conditions this effect presumably is elicited by the C-terminal part of the peptide.  相似文献   

20.
The aim of this study was to evaluate pancreatic juice secretion of calves in the first postnatal days, and determine a potential involvement of cholecystokinin (CCK) and intestinal CCK receptor in its regulation. Nine neonatal Friesian calves (five controls and four treated intraduodenally with FK480, a CCK-A receptor antagonist) were surgically fitted with a pancreatic duct catheter and a duodenal cannula before the first colostrum feeding. Collections of pancreatic juice and duodenal luminal pressure recordings were started early after recovery from anaesthesia and continued for 6 days. From day 2 or 3 of life, periodic fluctuations in pancreatic secretions were observed in concert with duodenal myoelectric motor complex (MMC) and variations in plasma pancreatic polypeptide (PP) concentrations. Intraduodenal administration of FK480 reduced pancreatic juice secretion while intravenous infusion of CCK had no effect. Immunocytochemistry indicated an association of mucosal CCK-A and -B receptors with neural components of the small intestine. In conclusion, periodic activity of the exocrine pancreas exists in neonatal calves soon after birth and local neural intestinal CCK-A receptors could be partly responsible for the modulation of neonatal calf pancreatic secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号