首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Hepatitis C virus (HCV) is prevalent worldwide and has become a major cause of liver dysfunction and hepatocellular carcinoma. The high prevalence of HCV reflects the persistent nature of infection and the large frequency of cases that resist the current interferon (IFN)-based anti-HCV therapeutic regimens. HCV resistance to IFN has been attributed, in part, to the function of the viral nonstructural 5A (NS5A) protein. NS5A from IFN-resistant strains of HCV can repress the PKR protein kinase, a mediator of the IFN-induced antiviral and apoptotic responses of the host cell and a tumor suppressor. Here we examined the relationship between HCV persistence and resistance to IFN therapy. When expressed in mammalian cells, NS5A from IFN-resistant HCV conferred IFN resistance to vesicular stomatitis virus (VSV), which normally is sensitive to the antiviral actions of IFN. NS5A blocked viral double-stranded RNA (dsRNA)-induced PKR activation and phosphorylation of eIF-2alpha in IFN-treated cells, resulting in high levels of VSV mRNA translation. Mutations within the PKR-binding domain of NS5A restored PKR function and the IFN-induced block to viral mRNA translation. The effects due to NS5A inhibition of PKR were not limited to the rescue of viral mRNA translation but also included a block in PKR-dependent host signaling pathways. Cells expressing NS5A exhibited defective PKR signaling and were refractory to apoptosis induced by exogenous dsRNA. Resistance to apoptosis was attributed to an NS5A-mediated block in eIF-2alpha phosphorylation. Moreover, cells expressing NS5A exhibited a transformed phenotype and formed solid tumors in vivo. Disruption of apoptosis and tumorogenesis required the PKR-binding function of NS5A, demonstrating that these properties may be linked to the IFN-resistant phenotype of HCV.  相似文献   

3.
4.
Hakki M  Geballe AP 《Journal of virology》2005,79(12):7311-7318
The human cytomegalovirus (HCMV) TRS1 and IRS1 genes rescue replication of vaccinia virus (VV) that has a deletion of the double-stranded RNA binding protein gene E3L (VVDeltaE3L). Like E3L, these HCMV genes block the activation of key interferon-induced, double-stranded RNA (dsRNA)-activated antiviral pathways. We investigated the hypothesis that the products of these HCMV genes act by binding to dsRNA. pTRS1 expressed by cell-free translation or by infection of mammalian cells with HCMV or recombinant VV bound to dsRNA. Competition experiments revealed that pTRS1 preferentially bound to dsRNA compared to double-stranded DNA or single-stranded RNA. 5'- and 3'-end deletion analyses mapped the TRS1 dsRNA-binding domain to amino acids 74 through 248, a region of identity to pIRS1 that contains no homology to known dsRNA-binding proteins. Deletion of the majority of this region (Delta86-246) completely abrogated dsRNA binding. To determine the role of the dsRNA-binding domain in the rescue of VVDeltaE3L replication, wild-type or deletion mutants of TRS1 were transfected into HeLa cells, which were then infected with VVDeltaE3L. While full-length TRS1 rescued VVDeltaE3L replication, deletion mutants affecting a carboxy-terminal region of TRS1 that is not required for dsRNA binding failed to rescue VVDeltaE3L. Analyses of stable cell lines revealed that the carboxy-terminal domain is necessary to prevent the shutoff of protein synthesis and the phosphorylation of eIF2alpha after VVDeltaE3L infection. Thus, pTRS1 contains an unconventional dsRNA-binding domain at its amino terminus, but a second function involving the carboxy terminus is also required for countering host cell antiviral responses.  相似文献   

5.
6.
7.
8.
Previously we found that the amino-terminal region of the NS1 protein of influenza A virus plays a key role in preventing the induction of beta interferon (IFN-beta) in virus-infected cells. This region is characterized by its ability to bind to different RNA species, including double-stranded RNA (dsRNA), a known potent inducer of IFNs. In order to investigate whether the NS1 RNA-binding activity is required for its IFN antagonist properties, we have generated a recombinant influenza A virus which expresses a mutant NS1 protein defective in dsRNA binding. For this purpose, we substituted alanines for two basic amino acids within NS1 (R38 and K41) that were previously found to be required for RNA binding. Cells infected with the resulting recombinant virus showed increased IFN-beta production, demonstrating that these two amino acids play a critical role in the inhibition of IFN production by the NS1 protein during viral infection. In addition, this virus grew to lower titers than wild-type virus in MDCK cells, and it was attenuated in mice. Interestingly, passaging in MDCK cells resulted in the selection of a mutant virus containing a third mutation at amino acid residue 42 of the NS1 protein (S42G). This mutation did not result in a gain in dsRNA-binding activity by the NS1 protein, as measured by an in vitro assay. Nevertheless, the NS1 R38AK41AS42G mutant virus was able to replicate in MDCK cells to titers close to those of wild-type virus. This mutant virus had intermediate virulence in mice, between those of the wild-type and parental NS1 R38AK41A viruses. These results suggest not only that the IFN antagonist properties of the NS1 protein depend on its ability to bind dsRNA but also that they can be modulated by amino acid residues not involved in RNA binding.  相似文献   

9.
Plant and animal viruses employ diverse suppressor proteins to thwart the host antiviral reaction of RNA silencing. Many suppressors bind dsRNA with different size specificity. Here, we examine the dsRNA recognition mechanism of the Rice stripe virus NS3 suppressor using quantitative biochemical approaches, as well as mutagenesis and suppression activity analyses in plants. We show that dimeric NS3 is a size-independent, rather than small interfering RNA-specific, dsRNA-binding protein that recognizes a minimum of 9 bp and can bind to long dsRNA with two or more copies. Global analysis using a combinatorial approach reveals that NS3 dimer has an occluded site size of ∼ 13 bp on dsRNA, an intrinsic binding constant of 1 × 108 M− 1, and virtually no binding cooperativity. This lack of cooperativity suggests that NS3 is not geared to target long dsRNA. The larger site size of NS3, compared with its interacting size, indicates that the NS3 structure has a border region that has no direct contact with dsRNA but occludes a ∼ 4-bp region from binding. We also develop a method to correct the border effect of ligand by extending the lattice length. In addition, we find that NS3 recognizes the helical structure and 2′-hydroxyl group of dsRNA with moderate specificity. Analysis of dsRNA-binding mutants suggests that silencing of the suppression activity of NS3 is mechanistically related to its dsRNA binding ability.  相似文献   

10.
11.
A chemical genetics approach was taken to identify inhibitors of NS1, a major influenza A virus virulence factor that inhibits host gene expression. A high-throughput screen of 200,000 synthetic compounds identified small molecules that reversed NS1-mediated inhibition of host gene expression. A counterscreen for suppression of influenza virus cytotoxicity identified naphthalimides that inhibited replication of influenza virus and vesicular stomatitis virus (VSV). The mechanism of action occurs through activation of REDD1 expression and concomitant inhibition of mammalian target of rapamycin complex 1 (mTORC1) via TSC1-TSC2 complex. The antiviral activity of naphthalimides was abolished in REDD1(-/-) cells. Inhibition of REDD1 expression by viruses resulted in activation of the mTORC1 pathway. REDD1(-/-) cells prematurely upregulated viral proteins via mTORC1 activation and were permissive to virus replication. In contrast, cells conditionally expressing high concentrations of REDD1 downregulated the amount of viral protein. Thus, REDD1 is a new host defense factor, and chemical activation of REDD1 expression represents a potent antiviral intervention strategy.  相似文献   

12.
p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G(1) arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G(1) arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication.  相似文献   

13.
Treatment of primary cultures of chicken embryo fibroblasts with a recombinant chicken alpha/beta interferon (rcIFN) induces an antiviral state that causes a strong inhibition of vaccinia virus and vesicular stomatitis virus replication but has no effect on avian reovirus S1133 replication. The fact that avian reovirus polypeptides are synthesized normally in rcIFN-treated cells prompted us to investigate whether this virus expresses factors that interfere with the activation and/or the activity of the IFN-induced, double-stranded RNA (dsRNA)-dependent enzymes. Our results demonstrate that extracts of avian-reovirus-infected cells, but not those of uninfected cells, are able to relieve the translation-inhibitory activity of dsRNA in reticulocyte lysates, by blocking the activation of the dsRNA-dependent enzymes. In addition, our results show that protein sigmaA, an S1133 core polypeptide, binds to dsRNA in an irreversible manner and that clearing this protein from extracts of infected cells abolishes their protranslational capacity. Taken together, our results raise the interesting possibility that protein sigmaA antagonizes the IFN-induced cellular response against avian reovirus by blocking the intracellular activation of enzyme pathways dependent on dsRNA, as has been suggested for several other viral dsRNA-binding proteins.  相似文献   

14.
Initial attempts to clone the matrix (M) gene of vesicular stomatitis virus (VSV) in a vaccinia virus expression vector failed, apparently because the expressed M protein, and particularly a carboxy-terminus-distal two-thirds fragment, was lethal for the virus recombinant. Therefore, a transient eucaryotic expression system was used in which a cDNA clone of the VSV M protein mRNA was inserted into a region of plasmid pTF7 flanked by the promoter and terminator sequences for the T7 bacteriophage RNA polymerase. When CV-1 cells infected with recombinant vaccinia virus vTF1-6,2 expressing the T7 RNA polymerase were transfected with pTF7-M3, the cells produced considerable amounts of M protein reactive by Western blot (immunoblot) analysis with monoclonal antibodies directed to VSV M protein. Evidence for biological activity of the plasmid-expressed wild-type M protein was provided by marker rescue of the M gene temperature-sensitive mutant tsO23(III) at the restrictive temperature. Somewhat higher levels of M protein expression were obtained in CV-1 cells coinfected with a vaccinia virus-M gene recombinant under control of the T7 polymerase promoter along with T7 polymerase-expressing vaccinia virus vTF1-6,2.  相似文献   

15.
16.
17.
18.
The antiviral protein kinase R (PKR) is an important host restriction factor, which poxviruses must overcome to productively infect host cells. To inhibit PKR, many poxviruses encode a pseudosubstrate mimic of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2), designated K3 in vaccinia virus. Although the interaction between PKR and eIF2α is highly conserved, some K3 orthologs from host-restricted poxviruses were previously shown to inhibit PKR in a species-specific manner. To better define this host range function, we compared the sensitivity of PKR from 17 mammals to inhibition by K3 orthologs from closely related orthopoxviruses, a genus with a generally broader host range. The K3 orthologs showed species-specific inhibition of PKR and exhibited three distinct inhibition profiles. In some cases, PKR from closely related species showed dramatic differences in their sensitivity to K3 orthologs. Vaccinia virus expressing the camelpox virus K3 ortholog replicated more than three orders of magnitude better in human and sheep cells than a virus expressing vaccinia virus K3, but both viruses replicated comparably well in cow cells. Strikingly, in site-directed mutagenesis experiments between the variola virus and camelpox virus K3 orthologs, we found that different amino acid combinations were necessary to mediate improved or diminished inhibition of PKR derived from different host species. Because there is likely a limited number of possible variations in PKR that affect K3-interactions but still maintain PKR/eIF2α interactions, it is possible that by chance PKR from some potential new hosts may be susceptible to K3-mediated inhibition from a virus it has never previously encountered. We conclude that neither the sensitivity of host proteins to virus inhibition nor the effectiveness of viral immune antagonists can be inferred from their phylogenetic relatedness but must be experimentally determined.  相似文献   

19.
20.
The interferon-inducible, double-stranded RNA (dsRNA)-dependent protein kinase which phosphorylates an endogenous HeLa 69 kilodalton polypeptide or exogenous initiation factor eIF2 was inhibited during vaccinia virus infection. High interferon doses (20,000 reference units per ml) did not prevent this inhibition. The inhibition required protein synthesis but not viral DNA synthesis during infection, suggesting that an early vaccinia virus gene function was responsible. An active dsRNA-dependent protein kinase could be recovered from an inactive extract by purification on polyinosinate X polycytidylate-cellulose. An inhibitor of the protein kinase, therefore, must be present in the inactive extract. Similar results have been obtained with mouse L929 cells. At early time points of infection, the protein kinase in cell extracts required exogenous dsRNA for activity. This argues against endogenous viral dsRNA and activation of the kinase in the intact cell. At late time points of infection (when vaccinia virus dsRNA was almost certainly formed), the inhibitor of the kinase is present. Accordingly, it seems unlikely that the kinase played any role in the interferon-mediated inhibition of virus growth observed in these cells under these particular conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号