首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) is an important endogenous mediator involved in many biological functions in both physiological and pathological conditions. Many of studies suggest that high level of NO may play a role in the pathogenesis of various diseases including respiratory diseases with bronchial hyper-reactivity (BHR). The aim of our study was to examine the relationship between NO production and BHR. The reactivity of tracheal and lung tissue smooth muscle to histamine and acetylcholine was measured in vitro in male guinea pigs pre-treated with NO synthase (NOS) inhibitors. The drugs were administered in vivo during either 3 or 17 days. Furthermore, the animals were exposed in vivo to the toluene vapours after administration of agents. NOS inhibitors showed mainly beneficial effect in the presented study. They decreased the hyper-reactivity of the tracheal and lung tissue smooth muscle evoked by toluene. The decrease was dependent on the duration of their administration and on the type of inhibitor. Short-term administration of inhibitors was more effective than long-term one. A more significant effect was recorded after the pre-treatment with non-selective inhibitor L-NAME. The results showed possible participation of constitutive forms of NOS in the BHR.  相似文献   

2.

Background

Nitric oxide (NO) has been shown to be important in sperm function, and the concentration of NO appears to determine these effects. Studies have demonstrated both positive and negative effects of NO on sperm function, but have not been able to provide a clear link between NO concentration and the extent of exposure to NO. To study the relationship between nitric oxide and sperm capacitation in vitro, and to provide a theoretical basis for the use of NO-related preparations in improving sperm motility for in vitro fertilization, we investigated the effects of NO concentration and time duration at these concentrations on in vitro sperm capacitation in both normal and abnormal sperm groups. We manipulated NO concentrations and the time duration of these concentrations using sodium nitroprusside (an NO donor) and NG-monomethyl-L-argenine (an NO synthase inhibitor).

Results

Compared to the normal sperm group, the abnormal sperm group had a longer basal time to reach the appropriate concentration of NO (p < 0.001), and the duration of time at this concentration was longer for the abnormal sperm group (p < 0.001). Both the basal time and the duration of time were significantly correlated with sperm viability and percentage of progressive sperm (p < 0.001). The experimental group had a significantly higher percentage of progressive sperm than the control group (p < 0.001).

Conclusions

We hypothesize that there is a certain regularity to both NO concentration and its duration of time in regards to sperm capacitation, and that an adequate duration of time at the appropriate NO concentration is beneficial to sperm motility.  相似文献   

3.
Two experiments were conducted to determine the effects of nitric oxide (NO) donors, endothelin-(ET-1), and NO synthase (NOS) inhibitors on bovine luteal function in vitro. In experiment 1, estrus in Brahman cows was synchronized with Synchro-Mate-B (SMB) and day-13-14 corpora luteal slices were weighed, diced and incubated in vitro. Treatments (100 ng/ml) were: vehicle, N[see symbol in text]-nitro-L-arginine-L-methyl ester (L-NAME), N(G)-monomethyl-L-arginine acetate (L-NMMA), diethylenetriamine (DETA), DETA-NONOate, sodium nitroprusside (SNP), or ET-1. In experiment 2, estrus was synchronized with Lutalyse, a Controlled Intravaginal Progesterone Releasing Device (CIDR), or cows were not synchronized. Corpora lutea were collected, weighed, and luteal slices were weighed, diced and incubated in vitro with treatments. Treatments (100ng/ml) were: vehicle, L- NAME, L-NMMA, DETA, DETA-NONOate, sodium nitroprusside, S-nitroso-N-acetylpenicillamine (SNAP) or endothelin-1. Tissues were incubated in M- 199 for 1 h without treatments and for 4 and 8 h in both experiments with treatments in both experiments. Media were analyzed for progesterone, prostaglandins E2 and F2alpha (PGE2, PGF2alpha) by radioimmunoassay (RIA). Hormone data in experiments 1 and 2 were analyzed by 2 x 7 and 3 x 2 x 8 factorial design for analysis of variance (ANOVA), respectively. Luteal weights in experiment 2 were analyzed by a one-way ANOVA. Concentrations of progesterone in media were similar (P > or = 0.05) among treatments within experiments. Concentrations of PGE2 in media in experiment 1 were undetectable in 90 and 57% of the samples at 4 and 8 h, respectively. PGF2alpha increased (P < or = 0.05) with time, but did not differ (P > or = 0.05) among treatments. Secretion of PGF2alpha was not affected by treatments (P > or = 0.05). In experiment 2, luteal weights of the induced estrous cycle were decreased (P < or = 0.05) by Lutalyse. Concentrations of PGE2 and PGF2alpha increased (P < or = 0.05) with time in control of all three synchronization regimens. DETA-NONOate, SNAP, sodium nitroprusside (NO donors) and ET-1 increased (P < or = 0.05) PGE2 except in the CIDR synchronized group (P > or = 0.05). No treatment increased (P > or = 0.05) PGF2alpha in any synchronization regimen. It is concluded that either SMB containing norgestomet or a CIDR containing progesterone alters luteal secretion of PGE2, Lutalyse lowers luteal weights in the induced estrous cycle, and NO or ET-1 given alone are not luteolytic agents. It is suggested that NO and ET-1 could have indirect antiluteolytic/luteotropic effects via increasing PGE2 secretion by luteal tissue rather than being luteolytic.  相似文献   

4.
In JH  Lee EJ  Lee BH  Lim YG  Chun MH 《Molecules and cells》2003,15(3):406-411
The expression and cellular localization of neuronal nitric oxide (NO) synthase (nNOS) were studied in the rabbit spinal cord following ischemic injury induced by clamping the descending aorta. In the normal spinal cord, nNOS immunoreactivity was localized to certain motor neurons located in the margin of the ventral horn. Following transient ischemia, immunoreactive spinal neurons increased in number, peaking five days after reperfusion. Quantitative evaluation by western blotting showed that nNOS peaked at 180% of control levels five days after reperfusion and decreased to 120% of controls by 14 days. These findings suggest that overproduced NO may act as a neurotoxic agent in the ischemic spinal cord.  相似文献   

5.
6.
Biofilms are a widespread form of occurrence of microorganisms in nature, and understanding the mechanism of regulation of their formation is of unquestionable practical significance for medicine and biotechnology. In the present work, the effect of nitric oxide (NO) on biofilm formation by Lactobacillus plantarum was investigated and the micromolar concentrations of exogenous NO were shown to have a negative effect on this process due to its toxic effect on the cells. However, the decrease in the level of endogenous NO in bacteria in the presence of a nitric oxide scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) impaired the characteristics of the forming biofilms, as was evident from the decrease in their size.  相似文献   

7.
We analyzed the effect of nitric oxide (NO) on oxygen-dependent cytotoxic responses mediated by neutrophils against unopsonized erythrocytes using three NO donors: S-nitrosoglutathione (GSNO), S-nitroso-N-acetylpenicillamine (SNAP), and sodium nitroprusside (SNP). Neutrophils were treated with these compounds for 1-2 min at 37 degrees C and cytotoxicity was then triggered in the presence of NO donors by precipitating immune complexes, aggregated IgG, the chemotactic peptide FMLP, or opsonized zymosan. GSNO induced, in all cases, a marked increase in cytotoxic responses, while SNAP moderately increased cytotoxicity triggered by immune complexes, aggregated IgG, or Z, opsonized zymosen, without modifying those responses induced by FMLP. By contrast, SNP dramatically suppressed cytotoxicity triggered by all of the stimuli assessed. The enhancing effects mediated by GSNO and SNAP did not depend on the stimulation of guanylyl cyclase and were prevented by the NO scavengers hemoglobin and PTIO (2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl 3-oxide). The inhibitory activity of SNP, on the other hand, was not prevented by NO scavengers, suggesting that it cannot be ascribed to the release of NO. In another set of experiments, neutrophils were pretreated with GSNO or SNAP for different times. Then cells were washed to remove NO donors from the culture medium, and cytotoxicity was triggered by different stimuli. It was found that neutrophils must be pretreated with NO donors for at least 4 h to increase cytotoxic responses, and pretreatment for longer periods (i.e., 8 or 18 h) further increased cytotoxicity. Not only cytotoxic responses, but also the production of O2- and H2O2, and the release of myeloperoxidase were increased under these conditions.  相似文献   

8.
The mechanisms of exogenous nitric oxide (NO) production through in vivo biotransformation of nitro-, nitroso-and amino-containing substances were discussed. In addition, the mechanisms of production and cellular sources of endogenous NO, appearing in the blood and tissues after the exposure to various DNA-damaging factors, have been considered. Considerable quantities of endogenous NO were detected in the body in the first hours after translation inhibition by cycloheximide or animal exposure to superlethal radiation doses, i.e., after the exposure to factors inducing destructive processes. The time and dose dependences of exogenous and endogenous NO production have been established. NO produced after a single or repeated administration of NO-donating compounds as well as endogenous NO proved to inhibit deoxyribonucleotide (dNTP) and DNA synthesis in animal tissues. Nonspecific compensatory responses to disturbed protein homeostasis included cyclic production of endogenous NO. The maximum levels of nitrosyl complexes were registered when the rate of protein synthesis decreased. The role of polyamines in the induction of macromolecule biosynthesis is discussed and NO production from these arginine-rich compounds is proposed. NO is released at the stage of polyamine inactivation. The inactivation mechanism includes the hydroxylation of aminogroups by NO synthase, the formation of nitroso intermediates, and their denitrosation with NO release.  相似文献   

9.
Administration of physiologic amounts of insulin in mice (200 microunits/g body weight) resulted in 9 fold increase of basal nitric oxide level from 0.51+/-0.1224 nmol/ml (mean+/-SD, n=12) to 4.45+/-0.645 nmol/ml after 30min of the injection of the hormone. Since NO is a potent inhibitor of platelet aggregation both in vitro and in vivo, we tested the possibility whether the administration of the hormone would result in the in vivo inhibition of thrombosis through the increase of NO level in the circulation. It was found that administration of insulin (200 microunits/g body weight) in mice protected >90%(p<0.00001, n=500) of these animals from death due to thrombosis in the coronary arteries induced by ADP injection in the heart. This effect of insulin in vivo was found to be directly related to the hormone induced increase of NO level in the system. The thromboprotective effect of insulin could not be achieved by using either prostacyclin, a well known antithrombotic agent or its stable probe prostaglandin E1 instead of insulin. The efficacy of insulin was neither related to the blood glucose level nor was the consequence of the hypoglycemic effect of the hormone. In contrast, inhibition of insulin induced increase of NO level resulted in the complete loss of the thromboprotective effect of the hormone. These results suggest that insulin besides being a hypoglycemic hormone could also be a potent antithrombotic humoral factor.  相似文献   

10.
To determine the role of nitric oxide (NO) in acute renal failure (ARF), we have studied the time course change activities to activity of nitric oxide synthase (NOS) isoform activities, both calcium dependent and independent NOS, in experimental ischemic ARF. We have also analyzed change activities to activity of the NOS activities in both renal cortex and medulla. Male SD rats (n = 5) were inducted to ARF by ischemia-reperfusion injury and divided into the following groups; Control group (sham operation), Day 0 group, (measurement performed on that day of operation), Day 1 group, (measurement performed one day after induction of ARF), Day 3 group and Day 7 group. Measurement of NOS activity was based on the following principles; NO is synthesized from arginine by nitric oxide synthase (NOS) and NO is converted to NO2 /NO3 (NOx) by oxidation. Detection of the final metabolite of NO, NOx was done using flow injection method (Griess reaction). The results were, (1) calcium dependent NOS activity in the cortex and medulla decreased, however it increased in the recovery period in the renal cortex (Cortex; Control, 0.941 ± 0.765, D0, 0.382 ± 0.271, D1, 0.118 ± 0.353, D3, 2.030 ± 0.235, D7, 3.588 ± 2.706, Medulla; Control, 1.469 ± 0.531, D0, 0.766 ± 0.156, D1, 0.828 ± 0.187, D3, 2.078 ± 0.094, D7, 1.289 ± 0.313 mol NOx produced/mg protein/30 min). (2) On the other hand, iNOS activity increased in the early phase of ARF, both in the cortex and medulla, but returned to control values during the recovery phase in cortex and was maintained at higher levels in the medulla (Cortex; Control, 0.333 ± 0.250, D0, 0.583 ± 0.428, D1, 1.167 ± 0.262, D3, 0.250 ± 0.077, D7, 0.452 ± 0.292, Medulla; Control, 0.139 ± 0.169, D0, 0.279 ± 0.070, D1, 1.140 ± 0.226, D3, 0.452 ± 0.048, D7, 0.625 ± 0.048 mol NOx produced/mg protein/30 min). These findings suggest that the role of NOS in ARF are different for the different NOS isoforms and have anatomic heterogeneity.  相似文献   

11.
The influence of NO donors, nitroglycerin (NG) and sodium nitroprusside (SNP), on Ca2+- uptake in rat heart and liver mitochondria is studied. It is shown that in vivo NG causes a rapid dose-dependent increase of Ca2+-uptake in rat heart mitochondria most pronounced at 0,5-1,0 mg/kg weight NG. This sharp increase of Ca2+-uptake is not accounted for by changes in membrane potential of mitochondria (deltapsim) because deltapsim is not influenced by less than 1,0 mg/kg NG, and moreover, decrease by approximately 30% is observed at 1,0-1,5 mg/kg NG. In vitro, on the contrary, a concentration-dependent decrease in Ca2+-uptake caused by NG as well as SNP is observed together with simultaneous decrease of deltapsim and concentration-dependent release of Ca2+ from mitochondria via Ca2+-uniporter as the result of partial depolarisation of mitochondrial inner membrane. The data obtained give an evidence that increase in Ca2+-uptake caused by NO donor in vivo takes place independently of changes in deltapsim and also is not resulted from a direct action of NO on Ca2+-uniporter. These observations allow us to suppose that activation of mitochondrial Ca2+-uptake in vivo and corresponding decrease in cytosolic Ca2+ concentration could be involved in vasodilatory action of nitric oxide.  相似文献   

12.
13.
Selective inhibitors of neuronal nitric oxide synthase (nNOS) were shown to protect brain and may be useful in the treatment of neurodegenerative diseases. In this context, our purpose has been to design and synthesize a new family of derivatives of thiadiazoles as possible inhibitors of nNOS. To achieve it a supervised artificial neural network model has been developed for the prediction of inhibition of Nitric Oxide Synthase using a dataset of 119 nNOS inhibitors. The definition of the molecules was achieved from a not-supervised neural network using a home made program named CODES. Also, thiadiazole-based heterocycles, previously predicted, were prepared as conformationally restricted analogues of a selective nNOS inhibitor, S-ethyl N-phenylisothiourea.  相似文献   

14.
A series of new nitric oxide (NO) releasing copolymers have been prepared by covalently anchoring alkyldiamine side chains onto a polymethacrylate-based polymer backbone, followed by NO addition to form the desired pendant diazeniumdiolate structures. The resulting diazeniumdiolated copolymers were characterized via UV spectroscopy, and their proton-driven decomposition to release NO was also examined by UV and FTIR as well as chemiluminescence. Polymers with up to 22.1 mol % of incorporated amine sites that can be converted to corresponding diazeniumdiolates could be prepared, and such polymers release up to 0.94 micromol/mg of NO. Further, novel NO releasing polymeric coatings were formulated by doping one of the new polymethacrylate-based NO donors within inert polymeric matrixes. Biodegradable poly(lactide-co-glycolide) was employed as a film additive to greatly prolong the NO release of such coatings by continuously generating protons within the organic phase of the polymeric films, thereby driving decomposition of the diazeniumdiolates.  相似文献   

15.
Nitric oxide inhibitor L-NAME when given alone caused a significant rise in both systolic and diastolic pressure, an increase in 24 hr urinary protein excretion and reduction in weight of the litter as compared to control group. Supplementation of MgSO4 at lower dose (250 mg/kg) did not inhibit this pre-eclamptic effect of L-NAME; but in higher doses (500 and 750 mg/kg), it inhibited the pre-eclamptic action of L-NAME. The results suggest that administration of MgSO4 improves the foetal outcome and significantly prevents the development of symptoms of pre-eclampsia like hypertension and proteinuria.  相似文献   

16.
We examined the effect of an extracellular matrix (ECM), produced by either bovine corneal endothelial (BCE) cells or mouse PF HR-9 teratocarcinoma cells, on the ability of rabbit costal chondrocytes to re-express their phenotype once confluent. Rabbit chondrocytes seeded at low densities and grown on plastic tissue culture dishes produced a heterogeneous cell population composed of both overtly differentiated and poorly differentiated chondrocytes, as well as fibroblastic cells. On the other hand, cultures grown on BCE-ECM- or HR-9-ECM-coated dishes reorganized into a homogeneous cartilage-like tissue composed of round cells surrounded by a refractile matrix that stained intensely with alcian green. The cell ultrastructure and that of their pericellular matrix were similar to those seen in vivo. The differentiation of chondrocyte cultures grown on the ECMs vs. plastic was reflected by a two- to three-fold increase in the maximal rate of incorporation of [35S]sulfate and [3H]glucosamine into proteoglycans. Furthermore, the ratio of 35S-labeled proteoglycans incorporated in the cell layer vs. those released into the medium was 1.5-2.5-fold higher when cultures were grown on the ECMs than on plastic. This suggests that the ECMs stimulate the incorporation of newly synthesized proteoglycans into a cartilaginous matrix. Since chondrocyte cultures grown on BCE-ECM or HR-9-ECM give rise to a homogeneous cartilage-like tissue even when seeded at low cell densities, they provide a model for the study of cell-substrate interactions that are responsible for the maintenance of the differentiated phenotype of chondrocytes.  相似文献   

17.
In the present study, we examined the effects of L-nitroarginine methylester (L-NAME), a non-selective nitric oxide synthase (NOS) inhibitor, indomethacin (IND), a non-selective COX inhibitor and a combination of these agents (L-NAME+IND) on carrageenan-induced pleurisy in rats. Exudate volume, albumin leakage, leukocyte influx, exudate and plasma nitrite/nitrate (NO(x)) levels and exudate PGE(2) levels increased markedly 6 h after an intrapleural injection of 2% carrageenan. First, the effects of L-NAME and IND alone were investigated. L-NAME non-significantly reduced exudate volume by 26% at 10 mg/kg (i.p.), and significantly by 45% at 30 mg/kg. IND dose-dependently decreased the exudate volume at 0.3-10 mg/kg (p.o.) and the effect reached the maximal level at 1 mg/kg (33%). Second, the effects of L-NAME (10 mg/kg, i.p.), IND (1 mg/kg, p.o.) and L-NAME+IND were examined. L-NAME and IND alone at the dose employed significantly reduced the exudate volume and albumin levels by 21-26%. L-NAME but not IND tended to reduce the increased exudate and plasma NO(x) by 18% and 19%, respectively. IND but not L-NAME significantly reduced leukocyte numbers and PGE(2) levels in the exudates by 25% and 77%, respectively. L-NAME+IND significantly reduced exudate volume, albumin leakage, leukocyte number, PGE(2) and NO(x) by 43%, 41%, 31%, 80% and 37%, respectively. The inhibitory effects of L-NAME+IND on exudate volume, albumin leakage and NO(x) levels were greater than those of L-NAME and IND alone. In conclusion, a non-selective NOS inhibitor and COX inhibitor showed anti-inflammatory effects at the early phase of carrageenan-induced pleurisy, and a combination of both inhibitors had a greater effect than each alone probably via the potentiation of NOS inhibition. The simultaneous inhibition of NOS and COX could be a useful approach in therapy for acute inflammation.  相似文献   

18.
一氧化氮合酶抑制剂L-NAME对大鼠脑缺血耐受诱导的影响   总被引:6,自引:0,他引:6  
Liu HQ  Li WB  Feng RF  Li QJ  Chen XL  Zhou AM  Zhao HG  Ai J 《生理学报》2003,55(2):219-224
采用大鼠四血管闭塞全脑缺血耐受模型和脑组织切片形态学方法,观察应用一氧化氮合酶(NOS)抑制剂L—NAME对大鼠海马CAl区脑缺血耐受(BIT)诱导的影响,在整体水平探讨一氧化氮(NO)在BIT诱导中的作用。54只Wistar大鼠凝闭双侧推动脉后分为6组:(1)假手术组(n=6);分离双侧颈总动脉,但不阻断脑血流;(2)损伤性缺血组(n=6):全脑缺血10min;(3)预缺血 损伤性缺血组(n=6):脑缺血预处理(CIP)3min,再灌注72h后行全脑缺血10min;(4)L—NAME组;分别于CIP前1h和后1、12及36h腹腔注射L—NAME(5mg/kg),每个时间点6只动物,其余步骤同预缺血 损伤性缺血组;(5)L—NAME L—精氨酸组(n=6):于CIP前1h腹腔注射L—NAME(5mg/kg)和L—精氨酸(300mg/kg),其它步骤同L—NAME组;(6)L—NAME 损伤性缺血组(n=6):于腹腔注射L—NAME(5mg/kg)72h后行全脑缺血10min。实验结果表明,(1)单纯10min全脑缺血可使海马CAl区组织学分级增加(表明损伤加重),神经元密度降低(P<0.01);(2)预缺血 损伤性缺血组的海马CAl区组织学分级、神经元密度与假手术组相比,无显著性差别(P>0.05);(3)L—NAME组中,应用L—NAME后海马CAl区组织学分级增加,神经元密度降低,与预缺血 损伤性缺血组相比有显著性差异(P<0.05),表明L—NAME可阻断CIP对神经元的保护作用;(4)L—NAME L—精氨酸组与L—NAME组相比,海马CAl区组织损伤明显减轻(P<0.05),但与预缺血 损伤性缺血组相比仍有显著性差别(P<0.05),提示L-精氨酸可部分逆转L—NAME的作用;(5)L—NAME 损伤性缺血组的组织学表现与损伤性缺血组相同(P>0.05)。这些结果表明,在整体情况下N0参与BIT的诱导。与CIP前1h及后1、12h给予L—NAME组相比,CIP后36h给予L—NAME对CIP保护作用的阻断效应明显减弱,提示N0在CIP后较早阶段即开始参与BIT的诱导。  相似文献   

19.
The effect of nitric oxide (NO) donors on survival of conidia, germination and growth of the opportunistic pathogenic fungusAspergillus fumigatus was investigated. Most efficient was sodium nitrite in an acidic milieu, (pH 4.5). At a concentration of 5 mmol/L it killed all resting conidia in buffer within 16 h. S-Nitroso derivatives of thiols (cysteine, N-acetylcysteine and N-acetylpenicillamine) at the same concentration killed about 30–50% of spores within 24 h. The NO scavenger, oxyhemoglobin, abolished these effects. S-Nitrosoglutathione had no fungicidal effect and promoted germination. Sodium nitrite and S-nitroso-N-acetylcysteine inhibited germination of conidia in various media from concentration of 0.5 mmol/L and stopped it at concentrations of 1.4–2.9 mmol/L. In media with glucose and casein hydrolyzate or sodium nitrate as nitrogen source, growth inhibition by sodium nitrite (0.5–2 mmol/L) was only weak and mostly transient. In general, the used strainA. fumigatus seems to be less sensitive to nitric oxide donors than dimorphic pathogenic fungi. Thus, nitric oxide is probably not a major effector molecule in killing phagocytized elements of this fungus by host's immunocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号