首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of endogenous peroxidase activity in the lacrimal gland of the rat during postnatal development was investigated by electron microscope cytochemistry Peroxidase activity is first found 6 hr after birth in only a few acinar cells At this stage, reaction product fills only localized segments of the scant rough endoplasmic reticulum and of the perinuclear cisternae. Peroxidase activity thus develops asynchronously in a given cell as well as in the secretory cell population as a whole 2 days after birth, all cisternae of the rough endoplasmic reticulum of a peroxidase-positive cell contain reaction product, but the majority of the acinar cells is still negative During the next days, the number of peroxidase-positive cells and the amount of the rough endoplasmic reticulum increase rapidly. By 15 days postparturition, all secretory cells are peroxidase-positive. Reaction product is then found in all cisternae of the rough endoplasmic reticulum including the perinuclear cisternae, in smooth surface vesicles located mainly between the rough endoplasmic reticulum and the Golgi stacks, in condensing vacuoles, and in all secretory granules The Golgi cisternae rarely contain reaction product In total homogenates and in fractions of glandular tissue of adult rats, peroxidatic and catalatic activities are demonstrable. The microsomal fractions and the postmicrosomal supernatants were used to separate peroxidase from catalase by precipitation with ammonium sulfate, and the following parameters were determined: substrate (H2O2-) optimum (∼ 2.0 x 10-4 M), pH-optimum (pH 6 5), temperature-optimum (42°C), and the absorption maximum (415 nm before and 425 nm after addition of H2O2) The same parameters were obtained from lacrimal fluid peroxidase. Both peroxidase from lacrimal gland and that from lacrimal fluid are almost completely inhibited by 10-3 M aminotriazole and are possibly identical enzymes. Peroxidase is secreted into lacrimal fluid, which does not contain catalase.  相似文献   

2.
Summary The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequisite for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10−3 M and for peroxidatic activity of catalase at 10−1 M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10−3 M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10−1 M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2–0.5 μ) particles similar to small peroxisomes described in various other cell-types. This work was presented in part at the twenty-fifth Annual Meeting of the Histochemical Society, April 5–6, 1974. Atlantic City, N.J., J. Histochem. Cytochem.22, 288 (1974).  相似文献   

3.
The lacrimal gland (Glandula orbitalis externa) of rat contains both peroxidase and catalase and was used as a model for biochemical and cytochemical distinction between peroxidase and catalase. Both enzymes were isolated by ammonium sulfate precipitation from tissue homogenates, and the effects of fixation with glutaraldehyde and various conditions of incubation were investigated colorimetrically using DAB as hydrogen donor. The lacrimal gland peroxidase is strongly inhibited by glutaraldehyde treatment. In contrast, for catalase the fixation with glutaraldehyde is the prerequistie for demonstration of its peroxidatic activity. The maximal peroxidatic activity was obtained after treatment of catalase with 3% glutaraldehyde, higher concentrations being inhibitory. For lacrimal gland peroxidase, the maximal rate of oxidation of DAB is at pH 6.5, whereas for catalase it is at pH 10.5. The optimal concentration of H2O2 for lacrimal gland peroxidase is at 10(-3)M and for peroxidatic activity of catalase at 10(-1)M. These optimal conditions obtained biochemically were applied to tissue sections of rat lacrimal gland. After the fixation of tissue with a low concentration of glutaraldehyde and incubation in the DAB medium at neutral pH containing 10(-3)M H2O2 (Peroxidase medium), the reaction product was localized in the cisternae of the rough endoplasmic reticulum, in elements of the Golgi apparatus, and in secretory granules. After the fixation of tissue with 3% glutaraldehyde and incubation in the DAB-medium containing 10(-1)M H2O2 and at pH 10.5 (catalase medium), the staining in the endoplasmic reticulum, the Golgi-apparatus and in secretory granules was completely inhibited and reaction product was localized exclusively in small (0.2-0.5 mu) particles similar to small peroxisomes described in various other cell-types.  相似文献   

4.
Synopsis the structure and cytochemistry of GERL was studied in several different exocrine secretory cells, including the exorbital lacrimal gland, parotid, lingual serous (von Ebner's), submandibular, and sublingual salivary glands, and exocrine pancreas of the rat; the lacrimal, parotid and pancreas of the guinea-pig; and the lacrimal gland of the monkey. GERL was morphologically and cytochemically similar in all cell types studied. It was located in the inner Golgi region and consisted of cisternal and tubular portions. Immature secretory granules were in continuity with GERL through multiple tubular connections. Modified cisternae of endoplasmic reticulum, with ribosomes only on one surface, closely paralleled parts of GERL. GERL and immature granules were intensely reactive for acid phosphatase activity, while the inner Golgi saccules were reactive for thiamine pyrophosphatase and nucleoside diphosphatase activities. In the rat exorbital lacrimal and parotid glands, reaction product for endogenous peroxidase, a secretory enzyme, was present in the endoplasmic reticulum, Golgi saccules, immature and mature secretory granules. GERL was usually free of reaction product or contained only a small amount. The widespread occurrence of GERL in secretory cells, and its intimate involvement with the formation of granules, suggest that it is an integral component of the secretory process.  相似文献   

5.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

6.
Synthesis of peroxidase was induced in the uterine epithelium of immature rats by multiple doses over a 24–96-h period of either 17 β-estradiol, the estrogen-antagonist Parke-Davis CI-628, or a combination of estradiol plus antagonist. Endogenous peroxidase activity first appeared in the cisternae of the rough endoplasmic reticulum of surface epithelial and glandular cells within 24–48 after the initial injection. Uterine peroxidase activity was also visible in the cisternae of the Golgi apparatus, in Golgi-derived secretory granules, and within the uterine and glandular lumen. Some cells of the epithelium produced little or no peroxidase, even after 96 h. Whereas the antagonist appeared to induce synthesis and secretion of peroxidase, neither the antagonist alone nor the combined treatment (estradiol plus antagonist) reproduced the estradiol-mediated growth in organ size and increased lumen diameter.  相似文献   

7.
Summary The fine structural localization of the endogeneous peroxidase activity in the thyroid of the young frog was studied. The reaction product for peroxidase was observed over the peripheral luminal colloid and apical region of the follicular epithelial cell. Most apical small granules and some parts of Golgi lamellae and a few Golgi vesicles were specifically stained. The cisternae of rough endoplasmic reticulum and the nuclear cisternae did not demonstrate any positive reaction for peroxidase activity with difference from that of various cells of mammalia. In this study, only mature peroxidase seems to be positive for its reaction and the enzyme in the rough endoplasmic reticulum is considered to be too immature to react for DAB method in the frog thyroid cell. The relationship between the localization of peroxidase reaction and the site of the iodination of thyroglobulin was discussed.  相似文献   

8.
Summary An endogenous peroxidase activity is demonstrated in acinar cells of the salivary gland and epithelial cells of the colonic crypt of normal rats and mice using electron microscopic histochemistry. The main site of the enzymatic activity is cisternae of the rough endoplasmic reticulum including those of the nuclear envelope, while the intensity of the activity is greatly variable among cell types. Some vesicular and cisternal elements of the Golgi apparatus and secretory granules exhibit the reaction, but it is not consistent in all cells with the peroxidase-positive endoplasmic reticulum. It is very interesting that the peroxidase activity is positive in the rough endoplasmic reticulum-Golgi complex-secretory granule system (EGG system) of the cells located at the beginning and the end of the digestive tract. This suggests a peroxidase-dependent anti-infectious mechanism.Some large and small membrane-limited non-secretory granules and mitochondria also reacted.  相似文献   

9.
The liver of male rats has been studied after CPIB stimulation by using the peroxidase reaction for localizing catalase in hepatic cells. CPIB administration leads to an increase in the number of microbodies, and it is suggested that one mechanism by which microbody proliferation occurs is a process of fragmentation or budding from preexisting microbodies. Reaction product was observed not only within the microbody matrix, but outside the limiting membrane of the microbody and in association with ribosomes of adjacent rough endoplasmic reticulum. This localization of reaction product is interpreted as evidence that catalase after synthesis on rough endoplasmic reticulum may accumulate near microbodies and may be transferred directly into these organelles without traversing the cisternae of the endoplasmic reticulum or Golgi apparatus.  相似文献   

10.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland  相似文献   

11.
Ultrastructural changes were studied in the cells undergoing secretory differentiation in zone I of the tubules of the uropygial gland of White Plymouth Rock chickens. A layer of basal cells and four secretory stages are recognized as the cells migrate from the periphery to the lumen of tubules and progressively elaborate a secretion product. Basal cells, containing rough endoplasmic reticulum and free ribosomes, rest on the basement membrane and are the source from which secretory cells arise. Dilated perinuclear cisternae and the proliferation of smooth endoplasmic reticulum in the form of vesicles, invaginated sacs and cusp-shaped cisternae indicate the onset of lipgenesis in stage I cells. The perinuclear cisternae are more dilated and the endoplasmic reticulum is composed on saccules and cisternae in stage II cells. Stage III cells are characterized by concentric lamellae of endoplasmic reticulum surrounding secretory droplets. Dilated cisternae of endoplasmic reticulum and secretory droplets both contain a reticular substance. The perinuclear cisternae of stage III cells have returned to normal dimensions. Large mature lucent secretory droplets, lined with electron-dense material, fill the cytoplasm ostage IV cells which degenerate and release their secretory product into the tubule lumen. Spherical membrane-bound compartments containing a mottled substance of moderate electron density occur in basal cells and all subsequent secretory stages. These mottled bodies are surrounded by saccules of endoplasmic reticulum in stage II cells and are intimately associated with secretory droplets in stage III cells, but there is no evidence that they give rise to secretory droplets and their role in secretory differentiation is unknown.  相似文献   

12.
Zusammenfassung Die Lokalisation endogener Peroxydase wurde in der Glandula parotis der Ratte mit der Methode von Graham und Karnovsky (1966) untersucht. Lichtmikroskopisch ist das Reaktionsprodukt im basalen Cytoplasma, in den Sekretgranula und, nach Pilocarpinreizung, in den Lumina der interzellulären Sekretkapillaren, der Drüsenendstücke und der Schaltstücke nachweisbar. Der Speichel enthält eine Peroxydase, die durch Hitze (100°) und durch KCN und 3-Amino-1,2,4-Triazol hemmbar ist. Der Speichel zeigt bei 415 m eine Schulter im Absorptionsspectrum, die nach Komplexbildung mit H2O2 um 15 m nach rechts verschoben wird. Elektronenmikroskopisoh läßt sich das Reaktionsprodukt der Peroxydase in allen Cisternen des rauhen endoplasmatischen Reticulums, einschließlich der perinucleären Cisterne, in glattwandigen Bläschen zwischen rauhem endoplasmatischen Reticulum und Golgi-Membranstapeln, in den kondensierenden Vacuolen und in allen Sekretgranula nachweisen. Die Cisternen des Golgi-Apparates enthalten selten Reaktionsprodukt. In der Glandula parotis der Ratte sind vorwiegend die kondensierenden Vacuolen, in geringerem Maße auch die Cisternen des Golgi-Apparates, an der Segregierung und Kondensierung von Peroxydase beteiligt.
The localization of endogenous peroxidase in the parotid gland of the rat
Summary The localization of endogenous peroxidase was investigated in the parotid gland of the rat by the method of Graham and Karnovsky (1966). By light microscopy, the reaction product was localized in the basal cytoplasm, in secretion granules, and, after injection of pilocarpine hydrochloride, in the lumina of the intercellular canaliculi, the acini and the intercalated ducts. The peroxidase reaction of the saliva collected from the oral cavity can be suppressed by heat (100° C), by 3-amino-1,2,4-triazole, and by KCN. Absorption spectra of the saliva show a shoulder at 415 m which is shifted by 15 m towards longer wave lengths after complexing with H2O2. At the ultrastructural level, reaction product is present in all cisternae of the rough endoplasmic reticulum including the perinuclear cisternae, in smooth vesicles located between the rough endoplasmic reticulum and the stacks of Golgi cisternae, in condensing vacuoles, and in all secretion granules. The Golgi cisternae seldom contain reaction product. The results show that in the parotid gland of the rat, the condensing vacuoles and, to a lesser extent, the cisternae of the Golgi apparatus function in the segregation and condensation of peroxidase.
Nachtrag bei der Korrektur: In einer soeben veröffentlichten Arbeit (Strum und Karnovsky, J. Ultrastructure Res. 31, 323–336, 1970) wurde endogene Peroxydase im endoplasmatischen Reticulum, in den membrangebundenen Ribosomen und gelegentlich in den Sekretgranula der Glandula submaxillaris der Ratte nachgewiesen.  相似文献   

13.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
In the mammary glands of lactating albino mice injected intravenously with 9, 10-oleic acid-3H or 9, 10-palmitic acid-3H, it has been shown that the labeled fatty acids are incorporated into mammary gland glycerides. The labeled lipid in the mammary gland 1 min after injection was in esterified form (> 95%), and the radioautographic reaction was seen over the rough endoplasmic reticulum and over lipid droplets, both intracellular and intraluminal. At 10–60 min after injection, the silver grains were concentrated predominantly over lipid droplets. There was no concentration of radioactivity over the granules in the Golgi apparatus, at any time interval studied. These findings were interpreted to indicate that after esterification of the fatty acid into glycerides in the rough endoplasmic reticulum an in situ aggregation of lipid occurs, with acquisition of droplet form. The release of the lipid into the lumen proceeds directly and not through the Golgi apparatus, in contradistinction to the mode of secretion of casein in the mammary gland or of lipoprotein in the liver. The presence of strands of endoplasmic reticulum attached to intraluminal lipid droplets provides a structural counterpart to the milk microsomes described in ruminant milk.  相似文献   

15.
Endogenous peroxidase activity has been demonstrated in sections of rat liver fixed briefly by glutaraldehyde perfusion and incubated in Graham and Karnovsky's medium for cytochemical demonstration of peroxidase activity (29). In 25–40% of sinusoidal cells, an electron-opaque reaction product is localized in segments of the endoplasmic reticulum, including the perinuclear cisternae, a few Golgi vesicles and saccules and in some large membrane-bounded granules. This staining is abolished after prolonged fixation or boiling of tissue sections in glutaraldehyde, and in the absence of H2O2 or DAB from the incubation medium. Furthermore, the reaction is inhibited completely by sodium azide and high concentrations of H2O2, and partially by KCN and aminotriazole. Among the different cells in hepatic sinusoids, the nonphagocytic "fat-storing" cells (39) are always peroxidase negative, whereas the lining cells in process of erythrophagocytosis are consistently peroxidase positive. The possible biological significance of endogenous peroxidase in Kupffer cells is discussed. In addition, the uptake of exogenous horseradish peroxidase by Kupffer cells has been investigated. The exogenous tracer protein, which in contrast to endogenous peroxidase of Kupffer cells is not inhibited by prolonged aldehyde fixation, is taken up by micropinocytosis and remains confined to the lysosomal system of Kupffer cells. The significance of these observations in respect to some recent studies suggesting localization of exogenous peroxidases in the endoplasmic reticulum of Kupffer cells and peritoneal macrophages (22, 23) is briefly discussed.  相似文献   

16.
This paper describes the ultrastructure of the seminal vesicle and the isoelectric focusing patterns of its secretion during sexual maturation and after allatectomy in Melanoplus sanguinipes (Fabr.) (Orthoptera : Acrididae). In epithelia from seminal vesicles of newly fledged males, the rough endoplasmic reticulum is well developed, and Golgi complexes are elaborate, which indicates the gland is metabolically active. The cells also contain large glycogen deposits and the lumen microvilli are well differentiated. These ultrastructural features are more dominant in 24-hr-old adults where the cytoplasm is clearly differentiated into basal and apical regions. Basally, the cytoplasm is dominated by rough endoplasmic reticulum, large Golgi complexes, glycogen deposits and numerous mitochondria, while the apical cytoplasm is filled with large secretory and/or lysosomal vesicles. Between days 3 and 7, the ultrastructural features change little other than the rough endoplasmic reticulum cisternae, which become vesicular. Analysis by isoelectric focusing shows that the amount of secretory protein increases with age until day 3, at which time the gland contains its full complement of secretion. In seminal vesicles from allatectomized insects, ultrastructural features of cells and isoelectric focusing patterns of the secretion arc identical to those from normal males.  相似文献   

17.
In guinea-pig oocytes, at every developmental stage, acid phosphatase is found histochemically in cytoplasmic granules. Ultracytochemically the reaction product is located in lysosomes and is some cisternae of the rough endoplasmic reticulum, but not in cortical granules or in vesicles with a rough endoplasmic reticulum membrane which are filled with a moderately dense homogeneous substance. It is discussed whether the acid phosphatase transforms reserve material into a storable form as has been proposed for the deposition of vitellogenin in the oocytes of lower vertebrates.  相似文献   

18.
To clarify the effects of bromocriptine on prolactinoma cells in vivo, immunohistochemical, ultrastructural and morphometrical analyses were applied to estrogen-induced rat prolactinoma cells 1 h and 6 h after injection of bromocriptine (3 mg/kg of body weight). One h after treatment, serum prolactin levels decreased markedly. Electron microscopy disclosed many secretory granules, slightly distorted rough endoplasmic reticulum, and partially dilated Golgi cisternae in the prolactinoma cells. Morphometric analysis revealed that the volume density of secretory granules increased, while the volume density of cytoplasmic microtubules decreased. These findings suggest that lowered serum prolactin levels in the early phase of bromocriptine treatment may result from an impaired secretion of prolactin due to decreasing numbers of cytoplasmic microtubules. At 6 h after injection, serum prolactin levels were still considerably lower than in controls. The prolactinoma cells at this time were well granulated, with vesiculated rough endoplasmic reticulum and markedly dilated Golgi cisternae. Electron microscopical immunohistochemistry revealed positive reaction products noted on the secretory granules, Golgi cisternae, and endoplasmic reticulum of the untreated rat prolactinoma cells. However, only secretory granules showed the positive reaction products for prolactin 6 h after bromocriptine treatment of the adenoma cells. An increase in the volume density of secretory granules and a decrease in the volume densities of rough endoplasmic reticulum and microtubules was determined by morphometric analysis, suggesting that bromocriptine inhibits protein synthesis as well as bringing about a disturbance of the prolactin secretion.  相似文献   

19.
The coagulating gland of male rodents is part of the prostatic complex. Various mechanisms of secretion have been postulated, in part because organelles commonly involved in the secretory process possess unusual features, such as extreme distension of the rough endoplasmic reticulum. In the present study, the pathway, kinetics, and mode of secretion in the coagulating gland of the mouse were studied by electron microscope autoradiography at intervals between 5 min and 8 h after administration of 3H-threonine. The percentage of grains associated with the rough endoplasmic reticulum was initially high and generally decreased throughout the experiment, while a pronounced rise in the proportion of grains associated with the Golgi apparatus and secretory granules was observed 6 h after injection of precursor. In addition, there was a smaller elevation in the percentage of grains over the Golgi apparatus and secretory granules between 1 and 4 h, and radioactive material first reached the lumen of the gland 4 h after injection of the precursor. Although the general pathway of intracellular transport of secretory protein resembles that in other cells, the results indicate that there are several unusual aspects to the secretory process in the coagulating gland. First, the rate of transport was markedly slower than in most other exocrine gland cells, since the bulk of the labeled protein did not reach the Golgi apparatus and secretory granules until 6 h after administration of precursor. This reflected prolonged retention of secretory products in the endoplasmic reticulum. Second, in addition to the major bolus of labeled material that traversed the cells at about 6 h, a smaller wave of radioactivity appeared to pass through the Golgi apparatus and secretory granules and reach the lumen earlier, within the first few hours after the injection. Finally, the primary mode of secretion in the coagulating gland appears to be merocrine because the secretory granules contained much labeled protein.  相似文献   

20.
The coagulating gland of the rat synthesizes two prevalent secretory proteins (transglutaminase and 115 K) that are discharched in a different manner, one being secreted in an apocrine fashion (transglutaminase) and the other one in a merocrine way (115 K). Differences in the intra- cellular pathway and the release of either protein were studied using immunofluorescence on semithin sections, immunoelectron microscopy of preembedding-processed chopper sections and postembedding-processed ultrathin sections of rat coagulating gland. Immunohistochemical staining using an anti-transglutaminase antibody resulted in dense labeling of the cytoplasm of secretory cells and their apical blebs, whereas the cisternae of the rough endoplasmic reticulum and the Golgi apparatus were completely unlabeled. When, on the contrary, the anti-115 K antiserum was used, dense labeling of the cisternae of the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules was seen. Intraluminal secretion was also labeled, but the secretory blebs remained unlabeled. Our findings show that, in the coagulating gland of the male rat, the two secretory proteins studied are processed in parallel, but at completely different intracellular pathways. They are released via different extrusion mechanisms. Transglutaminase is synthesized outside the endoplasmic reticulum, reaches the apical cell pole by free flow in the cytoplasm, and is released via apocrine blebs, the membranes of which appear to be derived from the apical plasma membrane. The protein 115 K, on the other hand, follows the classic route, being synthesized within the cisternae of rough endoplasmic reticulum, subsequently glycosylated in the Golgi apparatus, and released in a merocrine fashion. The mutual exclusion of the two secretory pathways and the regulation of the alternative release mechanism are still unresolved issues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号