首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li LR  Sisson VA  Kung SD 《Plant physiology》1983,71(2):404-408
Genetic variability in the large and small subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in several Nicotiana species has been characterized by isoelectric focusing patterns. This heritable variation provides an opportunity to examine the functional role of each of these subunits. In this study, specifically designed RuBPCase enzymes composed of identical large subunits but different small subunits were constructed in vivo by interspecific hybridization between the species N. sylvestris, N. tabacum, N. glauca, N. glutinosa, N. plumbaginifolia, and N. tomentosiformis. Small subunit polypeptides were combined to form a sequence of one, two, three, and four polypeptides with the large subunit of N. sylvestris. Kinetic properties of these hybrid enzymes were compared. No differences in the specific activity of either carboxylation or oxygenation nor in Km values for ribulose 1,5-bisphosphate, CO2, or O2 were detected among the RuBPCase enzymes from the various interspecific hybrids. Likewise, the ratio of carboxylation to oxygenation was constant.  相似文献   

2.
Distinctive properties are identified in the molecular structure of ribulose, 1,5-bisphosphate carboxylase/oxygenase (RuBPCase) in chlorophyll c-containing algae (i.e., chromophytes). Using purified enzyme from Cryptomonas sp., Coccolithophora sp., and Cylindrotheca fusiformis, we have determined that the RuBPCase holoenzyme of each species has a molecular weight, subunit composition, and isoelectric points of its subunits similar to the purified enzymes from pea and Chlamydomonas reinhardtii. The large subunits from chromophytes exhibit microheterogeneity in their isoelectric points, whereas two to four well-resolved isoelectric variants of the small subunit were observed in each RuBPCase preparation. In spite of the high degree of similarity in terms of physical properties, both the small and large RuBPCase subunits of the chromophytes are structurally different from those of chlorophytes; immunological studies demonstrate that RuBPCase subunits of these two groups have few antigenic determinants in common.  相似文献   

3.
H. J. Steinbiß  K. Zetsche 《Planta》1986,167(4):575-581
In the unicellular green alga Chlorogonium elongatum, the synthesis of the plastid enzyme ribulose bisphosphate carboxylase/oxygenase (RuBPCase) and its mRNAs is under the control of light and acetate. Acetate is the sole metabolizable organic carbon source for this organism. Light greatly promotes the synthesis of RuBPCase and the increase in the concentration of the mRNAs of both subunits of the enzyme while acetate has a strong inhibitory effect on this process. There is a good agreement between RuBPCase synthesis and the amount of translateable RuBPCase mRNA present in cells which are cultured under different conditions (autotrophic, heterotrophic, mixotrophic). During the transition period after transfer of the cells from heterotrophic to autotrophic growth conditions the amounts of the large and small subunits of the enzyme increase well coordinated. In contrast to the protein subunits the two subunit-mRNAs accumulate with different kinetics.Abbreviations LSU large subunit of RuBPCase - poly(A)- RNA - poly(A)+RNA non-, poly-adenylated RNA - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase EC 4.1.1.39 - SSU small subunit of RuBPCase  相似文献   

4.
Vu CV  Allen LH  Bowes G 《Plant physiology》1983,73(3):729-734
Soybean (Glycine max L. Merr. cv Bragg) was grown throughout its life cycle at 330, 450, and 800 microliters CO2 per liter in outdoor controlled-environment chambers under solar irradiance. Leaf ribulose-1,5-bisphosphate carboxylase (RuBPCase) activities and ribulose-1,5-bisphosphate (RuBP) levels were measured at selected times after planting. Growth under the high CO2 levels reduced the extractable RuBPCase activity by up to 22%, but increased the daytime RuBP levels by up to 20%.

Diurnal measurements of RuBPCase (expressed in micromoles CO2 per milligram chlorophyll per hour) showed that the enzyme values were low (230) when sampled before sunrise, even when activated in vitro with saturating HCO3 and Mg2+, but increased to 590 during the day as the solar quantum irradiance (photosynthetically active radiation or PAR, in micromoles per square meter per second) rose to 600. The nonactivated RuBPCase values, which averaged 20% lower than the corresponding HCO3 and Mg2+-activated values, increased in a similar manner with increasing solar PAR. The per cent RuBPCase activation (the ratio of nonactivated to maximum-activated values) increased from 40% before dawn to 80% during the day. Leaf RuBP levels (expressed in nanomoles per milligram chlorophyll) were close to zero before sunrise but increased to a maximum of 220 as the solar PAR rose beyond 1200. In a chamber kept dark throughout the morning, leaf RuBPCase activities and RuBP levels remained at the predawn values. Upon removal of the cover at noon, the HCO3 and Mg2+-activated RuBPCase values and the RuBP levels rose to 465 and 122, respectively, after only 5 minutes of leaf exposure to solar PAR at 1500.

These results indicate that, in soybean leaves, light may exert a regulatory effect on extractable RuBPCase in addition to the well-established activation by CO2 and Mg2+.

  相似文献   

5.
Glutamine synthetase (GS) and NADP-dependent glutamate dehydrogenase (NADP-GDH) play a key role in nitrogen assimilation in the ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr. Cke) strain S 238. The two enzymes were purified to apparent electrophoretic homogeneity by a three-step procedure involving diethylaminoethyl (DEAE)-Trisacryl and affinity chromatography, and DEAE-5PW fast protein liquid chromatography. This purification scheme resulted in a 23 and 62% recovery of the initial activity for GS and NADP-GDH, respectively. Purified GS had a specific activity of 713 nanomoles per second per milligram protein and a pH optimum of 7.2. Michaelis constants (millimolar) for the substrates were NH4+ (0.024), glutamate (3.2), glutamine (30), ATP (0.18), and ADP (0.002). The molecular weight (Mr) of native GS was approximately 380,000; it was composed of eight identical subunits of Mr 42,000. Purified NADP-GDH had a specific activity of 4130 nanomoles per second per milligram protein and a pH optimum of 7.2 (amination reaction). Michaelis constants (millimolar) for the substrates were NH4+ (5), 2-oxoglutarate (1), glutamate (26), NADPH (0.01), and NADP (0.03). Native NADP-GDH was a hexamer with a Mr of about 298,000 composed of identical subunits with Mr 47,000. Polyclonal antibodies were produced against purified GS and NADP-GDH. Immunoprecipitation tests and immunoblot analysis showed the high reactivity and specificity of the immune sera against the purified enzymes.  相似文献   

6.
The in vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase) (micromoles CO2 fixed per minute per milligram enzyme) from a number of C3 and C4 species and one green alga were measured. RuBPCases from species which utilize the C4 pathway have a specific activity ~2-fold higher than those from C3 species. RuBPCase from Chlamydomonas reinhardtii has a specific activity similar to the C4 enzyme. Higher specific activity forms of RuBPCase are associated with a decreased enzyme affinity for CO2 (increased Km[CO2]). A small but significant difference in the specific activity of RuBPCase from two C4 decarboxylation types was also observed. The relationship between enzymic properties and the presence or absence of a CO2 concentrating mechanism is discussed.  相似文献   

7.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCase) was isolated from isogenic diploid-tetraploid and tetraploid-octoploid sets of alfalfa (Medicago sativa L.) leaves. Molecular weights of RuBPCase subunits were similar across ploidy levels of both isogenic sets with subunits of 52,000 and 14,000. Apparent Km(CO2) values and substrate specificity factors (VcKo/VoKc) of RuBPCase were similar across ploidy levels of both isogenic sets. These results indicate that ploidy had no effect on the kinetic properties of RuBPCase in alfalfa.  相似文献   

8.
Photosynthetic properties of photoautotrophic suspensions cultured in a minimal growth medium have been evaluated to determine whether changes have occurred in ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, phosphoenol-pyruvate (PEP) carboxylase activity, chlorophyll content, or culture growth. Five photoautotrophic lines Amaranthus powellii, Datura innoxia, Glycine max, Gossypium hirsutum, and a Nicotiana tabacum-Nicotiana glutinosa fusion hybrid were grown in a medium without organic carbon other than phytohormones, and without vitamins. These photoautotrophic lines had total Rubisco activities ranging from 85 to 266 micromoles CO2 fixed per milligram chlorophyll hour−1, with percent activation of Rubisco ranging from 16 to 53%. Inclusion of protease inhibitors in the homogenization buffer did not result in higher Rubisco activity. PEP carboxylase activity for cells cultured in minimal medium was found to range from 16 to 146 micromoles CO2 per milligram chlorophyll hour−1, with no higher activity in the C4Amaranthus cells compared with PEP carboxylase activity in the C3 species assayed. Rubisco-to-PEP carboxylase ratios ranged from 2.2 to 1 up to 9.4 to 1. Chlorophyll contents increased in all but the Nicotiana cell line, and all of the photoautotrophic culture lines were capable of growth in vitamin-free medium with the exception of SB-P, which requires thiamine.  相似文献   

9.
Transport of dicarboxylic acids in castor bean mitochondria   总被引:1,自引:1,他引:0       下载免费PDF全文
Mitochondria from castor bean (Ricinus communis cv Hale) endosperm, purified on sucrose gradients, were used to investigate transport of dicarboxylic acids. The isolated mitochondria oxidized malate and succinate with respiratory control ratios greater than 2 and ADP/O ratios of 2.6 and 1.7, respectively. Net accumulation of 14C from [14C]malate or [14C]succinate into the mitochondrial matrix during substrate oxidation was examined by the silicone oil centrifugation technique. In the presence of ATP, there was an appreciable increase in the accumulation of 14C from [14C]malate or [14C]succinate accompanied by an increased oxidation rate of the respective dicarboxylate. The net accumulation of dicarboxylate in the presence of ATP was saturable with apparent Km values of 2 to 2.5 millimolar. The ATP-stimulated accumulation of dicarboxylate was unaffected by oligomycin but inhibited by uncouplers (2,4-dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone) and inhibitors of the electron transport chain (antimycin A, KCN). Dicarboxylate accumulation was also inhibited by butylmalonate, benzylmalonate, phenylsuccinate, mersalyl and N-ethylmaleimide. The optimal ATP concentration for stimulation of dicarboxylate accumulation was 1 millimolar. CTP was as effective as ATP in stimulating dicarboxylate accumulation, and other nucleotide triphosphates showed intermediate or no effect on dicarboxylate accumulation. Dicarboxylate accumulation was phosphate dependent but, inasmuch as ATP did not increase phosphate uptake, the ATP stimulation of dicarboxylate accumulation was apparently not due to increased availability of exchangeable phosphate.

The maximum rate of succinate accumulation (14.5 nanomoles per minute per milligram protein) was only a fraction of the measured rate of oxidation (100-200 nanomoles per minute per milligram protein). Efflux of malate from the mitochondria was shown to occur at high rates (150 nanomoles per minute per milligram protein) when succinate was provided, suggesting dicarboxylate exchange. The uptake of [14C]succinate into malate or malonate preloaded mitochondria was therefore determined. In the absence of phosphate, uptake of [14C]succinate into mitochondria preloaded with malate was rapid (27 nanomoles per 15 seconds per milligram protein at 4°C) and inhibited by butylmalonate, benzylmalonate, and phenylsuccinate. Uptake of [14C]succinate into mitochondria preloaded with malonate showed saturation kinetics with an apparent Km of 2.5 millimolar and Vmax of 250 nanomoles per minute per milligram protein at 4°C. The measured rates of dicarboxylate-dicarboxylate exchange in castor bean mitochondria are sufficient to account for the observed rates of substrate oxidation.

  相似文献   

10.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

11.
Vu JC  Allen LH  Bowes G 《Plant physiology》1987,83(3):573-578
Soybean (Glycine max [L.] cv Bragg) was grown at 330 or 660 microliters CO2 per liter in outdoor, controlled-environment chambers. When the plants were 50 days old, drought stress was imposed by gradually reducing irrigation each evening so that plants wilted earlier each succeeding day. On the ninth day, as the pots ran out of water CO2 exchange rate (CER) decreased rapidly to near zero for the remainder of the day. Both CO2-enrichment and drought stress reduced the total (HCO3/Mg2+-activated) extractable ribulose-1,5-bisphosphate carboxylase (RuBPCase) activity, as expressed on a chlorophyll basis. In addition, drought stress when canopy CER values and leaf water potentials were lowest, reduced the initial (nonactivated) RuBPCase activity by 50% compared to the corresponding unstressed treatments. This suggests that moderate to severe drought stress reduces the in vivo activation state of RuBPCase, as well as lowers the total activity. It is hypothesized that stromal acidification under drought stress causes the lowered initial RuBPCase activities. The Km(CO2) values of activated RuBPCase from stressed and unstressed plants were similar; 15.0 and 12.6 micromolar, respectively. RuBP levels were 10 to 30% lower in drought stressed as compared to unstressed treatments. However, RuBP levels increased from near zero at night to around 150 to 200 nanomoles per milligram chlorophyll during the day, even as water potentials and canopy CERs decreased. This suggests that the rapid decline in canopy CER cannot be attributed to drought stress induced limitations in the RuBP regeneration capability. Thus, in soybean leaves, a nonstomatal limitation of leaf photosynthesis under drought stress conditions appears due, in part, to a reduction of the in vivo activity of RuBPCase. Because initial RuBPCase activities were not reduced as much as canopy CER values, this enzymic effect does not explain entirely the response of soybean photosynthesis to drought stress.  相似文献   

12.
Ribulose-1,5-bisphosphate carboxylase (RuBPCase) was purified from the marine chromophyte Olisthodiscus luteus. This study represents the first extensive analysis of RuBPCase from a chromophytic plant species as well as from an organism where both subunits of the enzyme are encoded on the chloroplast genome. The size of the purified holoenzyme (17.9 Svedberg units, 588 kilodaltons) was determined by sedimentation analysis and the size of the subunits (55 kilodaltons, 15 kilodaltons) ascertained by analytical sodium dodecyl sulfate gel electrophoresis. This data predicts either an 8:9 or 8:8 ratio of the large to small subunits in the holoenzyme. Amino acid analyses demonstrate that the O. luteus RuBPCase large subunit is highly conserved and the small subunit much less so when compared with the chlorophytic plant peptides. The catalytic optima of pH and Mg2+ have been determined as well as the response of enzyme catalysis to temperature. The requirements of NaHCO3 and Mg2+ for enzyme activation have also been analyzed. The Michaelis constants for the substrates of the carboxylation reaction (CO2 and ribulose bisphosphate) were shown to be 45 and 48 micromolar, respectively. Competitive inhibition by oxygen of RuBPCase-catalyzed CO2 fixation was also demonstrated. These data demonstrate that a high degree of RuBPCase conservation occurs among widely divergent photoautotrophs regardless of small subunit coding site.  相似文献   

13.
The large subunit (LS) of tobacco (Nicotiana rustica) ribulose-1,5-bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) contains a trimethyllysyl residue at position 14, whereas this position is unmodified in spinach ribulose-P2 carboxylase. A protein fraction was isolated from tobacco chloroplasts by rate-zonal centrifugation and anion-exchange fast protein liquid chromatography that catalyzed transfer of methyl groups from S-adenosyl-[methyl-3H]-l-methionine to spinach ribulose-P2 carboxylase. 3H-Methyl groups incorporated into spinach ribulose-P2 carboxylase were alkaline stable but could be removed by limited tryptic proteolysis. Reverse-phase high-performance liquid chromatography of the tryptic peptides released after proteolysis showed that the penultimate N-terminal peptide from the LS of spinach ribulose-P2 carboxylase contained the site of methylation, which was identified as lysine-14. Thus, the methyltransferase activity can be attributed to S-adenosylmethionine:ribulose-P2 carboxylase LS (lysine) `N-methyltransferase, a previously undescribed chloroplast enzyme. The partially purified enzyme was specific for ribulose-P2 carboxylase and exhibited apparent Km values of 10 micromolar for S-adenosyl-l-methionine and 18 micromolar for ribulose-P2 carboxylase, a Vmax of 700 picomoles CH3 groups transferred per minute per milligram protein, and a broad pH optimum from 8.5 to 10.0. S-Adenosylmethionine:ribulose-P2 carboxylase LS (lysine)εN-methyltransferase was capable of incorporating 24 3H-methyl groups per spinach ribulose-P2 carboxylase holoenzyme, forming 1 mole of trimethyllysine per mole of ribulose-P2 carboxylase LS, but was inactive on ribulose-P2 carboxylases that contain a trimethyllysyl residue at position 14 in the LS. The enzyme did not distinguish between activated (Mg2+ and CO2) and unactivated forms of ribulose-P2 carboxylase as substrates. However, complexes of activated ribulose-P2 carboxylase with the reaction-intermediate analogue 2′-carboxy-d-arabinitol-1,5-bisphosphate, or unactivated spinach ribulose-P2 carboxylase with ribulose-1,5-bisphosphate, were poor substrates for tobacco LS εN-methyltransferase.  相似文献   

14.
Makino A  Mae T  Ohira K 《Plant physiology》1983,73(4):1002-1007
Changes in photosynthesis and the ribulose 1,5-bisphosphate (RuBP) carboxylase level were examined in the 12th leaf blades of rice (Oryza sativa L.) grown under different N levels. Photosynthesis was determined using an open infrared gas analysis system. The level of RuBP carboxylase was measured by rocket immunoelectrophoresis. These changes were followed with respect to changes in the activities of RuBP carboxylase, ribulose 5-phosphate kinase, NADP-glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglyceric acid kinase.

RuBP carboxylase activity was highly correlated with the net rate of photosynthesis (r = 0.968). Although high correlations between the activities of other enzymes and photosynthesis were also found, the activity per leaf of RuBP carboxylase was much lower than those of other enzymes throughout the leaf life. The specific activity of RuBP carboxylase on a milligram of the enzyme protein basis remained fairly constant (1.16 ± 0.07 micromoles of CO2 per minute per milligram at 25°C) throughout the experimental period.

Kinetic parameters related to CO2 fixation were examined using the purified carboxylase. The Km(CO2) and Vmax values were 12 micromolar and 1.45 micromoles of CO2 per minute per milligram, respectively (pH 8.2 and 25°C). The in vitro specific activity calculated at the atomospheric CO2 level from the parameters was comparable to the in situ true photosynthetic rate per milligram of the carboxylase throughout the leaf life.

The results indicated that the level of RuBP carboxylase protein can be a limiting factor in photosynthesis throughout the life span of the leaf.

  相似文献   

15.
When 8-day-old wheat seedlings (Triticum aestivum L. var. Chris) are placed in the dark the fully expanded primary leaves undergo the normal changes associated with senescence, for example, loss of chlorophyll, soluble protein, and photosynthetic capacity (Wittenbach 1977 Plant Physiol. 59: 1039-1042). Senescence in this leaf is completely reversible when plants are transferred to the light during the first 2 days, but thereafter it becomes an irreversible process. During the reversible stage of senescence the loss of ribulose bisphosphate carboxylase (RuBPCase) quantitated immunochemically, accounted for 80% of the total loss of soluble protein. There was no significant change in RuBPCase activity per milligram of antibody-recognized carboxylase during this stage despite an apparent decline in specific activity on a milligram of soluble protein basis. With the onset of the irreversible stage of senescence there was a rapid decline in activity per milligram of carboxylase, suggesting a loss of active sites. There was no increase in total proteolytic activity during the reversible stage of senescence despite the loss of carboxylase, indicating that this initial loss was not due to an increase in total activity. An 80% increase in proteolytic activity was correlated with the onset of the irreversible stage and the rapid decline in RuBPCase activity per milligram of carboxylase. Delaying senescence with zeatin reduced the rate of loss of carboxylase and delayed both the onset of the irreversible stage and the increase in proteolytic activity to the same degree, suggesting that these events are closely related. The main proteinases present in wheat and responsible for the increase in activity are the thiol proteinases. These proteinases have a high affinity for RuBPCase, exhibiting an apparent Km at 38 C of 1.8 × 10−7 m. The Km for casein was 1.1 × 10−6 m. If casein is representative of noncarboxylase protein, then the higher affinity for carboxylase may provide an explanation for its apparent preferential loss during the reversible stage of senescence.  相似文献   

16.
E. Roscher  K. Zetsche 《Planta》1986,167(4):582-586
In the green alga Chlorogonium elongatum the promoting effect of light on the synthesis of ribulose bisphosphate carboxylase/oxygenase (RuBPCase) is mainly caused by blue light of wavelengths between 430 nm and 510 nm, with a maximum effect at about 460 nm. Blue light also causes an increase in the amounts of the mRNAs for the large and the small subunits of the enzyme. Furthermore, the concentration of RuBPCase is affected by the light energy fluence rate. The rate of synthesis as well as the maximal obtainable concentration of the enzyme are functions of the light energy fluence rate up to 26 W·m-2. No further increase occurs beyond that intensity. The quantity of irradiation also alters the concentrations of the subunit mRNAs. The results indicate that the changes in the mRNA levels are the major regulatory steps in the light-dependent synthesis of the RuBPCase enzyme.Abbreviations LSU large subunit - pSSU precursor of the small subunit - RuBPCase ribulose bisphosphate carboxylase/oxygenase EC 4.1.1.39 Dedicated to Prof. Dr. E. Bünning on the occasion of his 80 th birthday  相似文献   

17.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 1.1.39) (RuBPCase) was quantified using polyacrylamide-gel electrophoresis in whole 9-d-old first leaves of 14 genotypes of Triticum, and cellular RuBPCase levels calculated. Diploids, tetraploids and hexaploids were analysed and it was confirmed that the RuBPCase level per cell is closely related to ploidy in wheat. Inter-genotypic variation in RuBPCase levels per cell and per leaf were surveyed. It was found that the interactions between leaf size, cell size and RuBPCase levels result in small variations in RuBPCase levels per unit leaf area between genotypes.Abbreviation RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase  相似文献   

18.
Ribulose-1,5-bisphosphate carboxylase/oxygelase (RuBPCase) was studied in melon leaves infected by Colletotrichum lagenarium, a fungal pathogen of melons. Electrophoretic analysis of melon leaf proteins indicated a strong effect of infection on RuBPCase, the subunits of which gradually disappeared during the different stages of infection. Enzyme activity also declined 4 d after inoculation and its content, measured by immunoelectrophoresis, decreased to a similar extent. Synthesis of the large and small subunits of RuBPCase was followed by in-vivo pulse-labeling experiments. A drastic decrease in the rate of RuBPCase-subunit synthesis occurred 3 d after inoculation and preceded the appearance of disease symptoms. There was an apparent coordination of the synthesis of the two subunits under these conditions.Abbreviations LS (SS) Large (small) subunit of RuBPCase - RuBPCase ribulose-1,5-bisphosphate carboxylase/oxygenase - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

19.
Vu JC  Allen LH  Bowes G 《Plant physiology》1984,76(3):843-845
Ribulose bisphosphate carboxylase/oxygenase (RuBPCase) from several plants had substantially greater activity in extracts from lightexposed leaves than dark leaves, even when the extracts were incubated in vitro with saturating HCO3 and Mg2+ concentrations. This occurred in Glycine max, Lycopersicon esculentum, Nicotiana tabacum, Panicum bisulcatum, and P. hylaeicum (C3); P. maximum (C4 phosphoenolpyruvate carboxykinase); P. milioides (C3/C4); and Bromelia pinguin and Ananas comosus (Crassulacean acid metabolism). Little or no difference between light and dark leaf extracts of RuBPCase was observed in Triticum aestivum (C3); P. miliaceum (C4 NAD malic enzyme); Zea mays and Sorghum bicolor (C4 NADP malic enzyme); Moricandia arvensis (C3/C4); and Hydrilla verticillata (submersed aquatic macrophyte). It is concluded that, in many plants, especially Crassulacean acid metabolism and C3 species, a large fraction of ribulose-1,5-bisphosphate carboxylase/oxygenase in the dark is in an inactivatable state that cannot respond to CO2 and Mg2+ activation, but which can be converted to an activatable state upon exposure of the leaf to light.  相似文献   

20.
A rapid method is described for the preparation of up to 500 milligrams of pure ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBP carboxylase) from 250 grams of field-grown soybean leaves. Leaves were extracted in 20 millimolar phosphate (pH 6.9) at 4°C, containing 4% (w/v) polyvinylpolypyrrolidone, 10 micromolar leupeptin, 1 millimolar phenylmethyl sulfonylfluoride, 1 millimolar diethyldithiocarbamate, 5 millimolar MgCl2, 1 millimolar dithiothreitol, 0.2 millimolar ethylene-diaminetetraacetic acid, 50 millimolar 2-mercaptoethanol. The extract was incubated in the presence of 5 millimolar ATP at 58°C for 9 minutes, then centrifuged and concentrated. Sucrose gradient centrifugation into 8 to 28% (w/v) sucrose on a vertical rotor for 2.5 hours yielded pure enzyme with a specific activity of 1.1 to 1.3 micromoles per minute per milligram protein at pH 8.0, 25°C. Soybean plants of the same line grown (at 400 microeinsteins per square meter per second) in growth chambers yielded enzyme with a specific activity of 0.6 to 0.7 micromoles per minute per milligram protein. During prolonged purification procedures a proteolytic degradation of RuBP carboxylase caused complete loss of catalytic activity. Without destroying the quaternary structure of the enzyme, a 3 kilodalton peptide was removed from all large subunits before further breakdown (removal of a 5 kilodalton peptide) occurred. Catalytic competence of the enzyme was abolished with the loss of the first (3 kilodalton) peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号