首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. In size-structured communities where individuals grow in size over their life cycle, interactions between species will shift between competitive and predatory interactions depending on size relationships. The outcome of interactions will subsequently depend on the strength of competitive and predatory interactions, respectively. 2. In a whole lake experiment including four experimental lakes, it was tested under which conditions the competing prey, roach Rutilus rutilus, could successfully recruit into systems previously occupied by the predator, perch Perca fluviatilis. Two replicated introduction experiments were carried out 3 years apart. 3. Roach were able to successfully recruit into three of the four experimental lakes of which two were also inhabited by the top predator pike Esox lucius. Resource levels were unrelated to whether roach could successfully recruit into the systems as recruiting roach in all years were feeding close to their maximum rate. 4. High population fecundity of roach and low predation pressure by perch combined were necessary ingredients for successful recruitment and the presence of only one of these conditions did not result in successful recruitment. 5. It is hypothesized that, although roach were able to successfully recruit into one lake with only perch present in addition to the two lakes that also inhabited pike, long-term coexistence of roach and perch depends on the presence of another top predator (e.g. pike) selectively preying on perch. This hypothesis was supported by data on co-occurrence of perch and roach in different lakes. 6. Overall, the results are in accordance with expectation of size-structured life-history omnivory theory suggesting that coexistence between top predator and intermediate consumer is fragile.  相似文献   

2.
Considerable variation in morphology associated with resource use is a classic example of local adaptation to the environment. We demonstrate that a temporal change in feeding morphology might occur within a population. In a 5-year natural field experiment, we estimated gill raker morphology, resource density and population dynamics of the roach and its competitor, the perch. Despite a variation in density of zooplankton resources and perch across years, no change in roach density was observed. However, gill raker morphology in roach covaried with size structure of the zooplankton resource across years. A laboratory experiment confirmed that gill raker morphology has a great effect on roach foraging efficiency on zooplankton and that there is a functional trade-off with regard to zooplankton foraging. We suggest that the response in gill raker structure is an adaptation to deal with the rapid population dynamics of zooplankton, which are in turn mediated by changes in the size structure of the competing perch.  相似文献   

3.
Individual and trophic efficiencies of size-structured communities are derived from mechanistically based principles at the individual level. The derivations are relevant for communities with a size-based trophic structure, i.e. where trophic level is strongly correlated with individual size as in many aquatic systems. The derivations are used to link Lindeman's trophic theory and trophic theory based on average individuals with explicit individual-level size spectrum theory. The trophic efficiency based on the transfer of mass between trophic levels through predator-prey interactions is demonstrated to be valid only when somatic growth can be ignored. Taking somatic growth into account yields an average individual growth efficiency that is smaller than the trophic efficiency.  相似文献   

4.
After the diversion of a nutrient-rich inflow, the eutrophic lake, Alderfen Broad, initially showed reduced total phosphorus concentrations and phytoplankton populations, clear water and the establishment of submerged macrophytes. Internal P loading then increased, perhaps stimulated by the senescence of submerged macrophytes and exacerbated by the lack of flushing. Cyanophytes appeared in the summer of two years. As a consequence of poor recruitment of roach (Rutilus rutilus (L.)), the chief zooplanktivore, and a summerkill of the fish population, populations of large-bodied Cladocera (Daphnia hyalina/ longispina and ultimately D. magna) developed. In the long-term, these may have limited the further development of phytoplankton populations and clear water and submerged macrophytes returned. During this latter period, internal P release has remained high (> 380 µg l-1), thereby indicating the scope for biomanipulation even in eutrophic conditions. However, isolation of the lake has led to a decrease in water level (which through increased temperatures and lowered dissolved oxygen levels was probably responsible for the fish deaths) and further concentration of internal P load. Sediment is now being removed to reestablish greater water depth.  相似文献   

5.
Seasonal changes in vertical distribution of Daphnia galeata and other zooplankters were monitored in lake Lombola (69° 07′ N). Depth-habitat use, availability of edible algae and zooplankton densities were recorded to examine seasonal changes in intensity of competition between Daphnia and the other herbivores in the lake. Early in July, the exephippial generation of Daphnia aggregated near the surface, independently of body-size. In late July, when fish planktivory was expected to increase, the daphnids moved down during the day. In August, as intraspecific competition for food intensified, small and large Daphnia partitioned the water column, with larger individuals staying deeper. In September, Daphnia became dominated by large individuals, edible phytoplankton reached the seasonal minimum, and the vertical distribution of Daphnia gradually stretched out towards the surface. The observations on food availability and zooplankton densities suggest that interspecific competition intensified by the end of July. Species and stages that were most exposed to exploitative and interference competition by Daphnia were those staying deeper, because their vertical distribution overlapped more with the larger, competitively superior daphnids. These susceptible competitors included Keratella cochlearis and Synchaeta, among the rotifers, and nauplii and early copepodite stages of Cyclops scutifer. Depth-habitat use is discussed in relation to copepod development, zooplankton dynamics and predator-mediated coexistence.  相似文献   

6.
Dynamics of greenhouse gases, CH4, CO2 and N2O, and nutrients, NO 2 + NO 3 , NH 4 + and P, were studied in the sediments of the eutrophic, boreal Lake Kevätön in Finland. Undisturbed sediment cores taken in the summer, autumn and winter from the deep and shallow profundal and from the littoral were incubated in laboratory microcosms under aerobic and anaerobic water flow conditions. An increase in the availability of oxygen in water overlying the sediments reduced the release of CH4, NH 4 + and P, increased the flux of N2O and NO 2 + NO 3 , but did not affect CO2 production. The littoral sediments produced CO2 and CH4 at high rates, but released only negligible amounts of nutrients. The deep profundal sediments, with highest carbon content, possessed the greatest release rates of CO2, CH4, NH 4 + and P. The higher fluxes of these gases in summer and autumn than in winter were probably due to the supply of fresh organic matter from primary production. From the shallow profundal sediments fluxes of CH4, NH4 + and P were low, but, in contrast, production of N2O was the highest among the different sampling sites. Due to the large areal extension, the littoral and shallow profundal zones had the greatest importance in the overall gas and nutrient budgets in the lake. Methane emissions, especially the ebullition of CH4 (up to 84% of the total flux), were closely related to the sediment P and NH 4 + release. The high production and ebullition of CH4, enhances the internal loading of nutrients, lake eutrophication status and the impact of boreal lakes to trophospheric gas budgets.  相似文献   

7.
SUMMARY. 1. The small Lake Negenmad, in the nature reserve 'De Oude Venen', was isolated from the canals and lakes of the Frisian lake system. Its chemistry and phytoplankton were monitored 1 year before (1984) and 2 years after (1985–86) isolation. These characteristics were compared with those of the adjacent Lake Veertigmad which was not manipulated.
2. The hydrological intervention prevented the inflow of chloride-rich IJsselmeer water into Lake Negenmad and made its water table more dependent on evapotranspiration, precipitation and upwelling water. In comparison with the unmanipulated lake. Lake Negenmad became less saline (c. 50%), more humic (c. 50%) and total dissolved (<0.2,μm) iron concentration increased dramatically.
3. During the 2 years of damming no marked differences in the total nutrient concentrations of either lake were observed. However, the maximum phytoplankton density in the dammed lake was half that in the unmanipulated lake. The lower density may have been caused by low P availability after formation of humus-iron phosphate species.
4. Preventing the inflow of water from the Frisian lake system favoured the occurrence in Lake Negenmad of flagellated species (Chrysophyceae, Cryptophyceae) at the expense of filamentous and nuisance-causing cyanobacteria (Oscillutoria, Anabaena, Aphanizomenon spp.).
5. The implications of these results for water quality management of reservoirs in peaty areas are briefly discussed.  相似文献   

8.
Across the biosphere, rapid and accelerating changes in land use, climate and atmospheric composition driven primarily by anthropogenic forces are known to exert major influences on the productivity, biodiversity and sustainable provision of ecosystem goods and services. Thus far, many studies assessing the ecological consequences of global change have focussed on single trophic levels. However, understanding these changes and predicting their consequences may benefit from unravelling how interactions between primary producers, primary, and secondary consumers (plants, herbivores and carnivores) are being affected. Conservation and restoration may be improved when assessing species and their interactions on appropriate scales, while acknowledging that above- and belowground biota are ecologically linked. Selection pressures on one species may depend on others, so that species loss means more for diversity than just loss of a single taxon. It may also result in the loss of other species of the same or different trophic levels and in the dilution, or even loss, of various selection pressures. We review a number of discussions on trophic interactions in a changing world in relation to (i) the scale of ecosystem response to environmental change with emphasis on the soil subsystem, (ii) the linkage of above- and belowground subsystems and (iii) natural selection and the stability of community structure and ecosystem functioning. We discuss the need to bring together isolated sub-disciplines of ecology in order to understand the implications of global changes for ecosystem processes.

Zusammenfassung

In der gesamten Biosphäre üben schnelle und sich beschleunigende Veränderungen in der Landnutzung, des Klimas und der atmosphärischen Zusammensetzung, die vor allem durch anthropogene Kräfte angetrieben werden, größten Einfluss auf die Produktivität, die Biodiversität und die nachhaltige Bereitstellung von Ökosystemgütern und –leistungen aus. Bisher konzentrierten sich viele Untersuchungen, die ökologische Konsequenzen des globalen Wandels abschätzen, auf einzelne trophische Level. Das Verständnis dieser Veränderungen und die Vorhersage ihrer Konsequenzen kann jedoch davon profitieren, dass enträtselt wird, wie die Interaktionen zwischen den Primärproduzenten und den primären und sekundären Konsumenten (Pflanzen, Herbivore und Karnivore) beeinflusst werden. Naturschutz und –wiederherstellung kann verbessert werden, wenn die Arten und ihre Interaktionen auf angemessenen Skalen und unter Berücksichtigung, dass ober- und unterirdische Biota ökologisch miteinander verbunden sind, eingeschätzt werden. Der Selektionsdruck auf eine Art kann von anderen Arten abhängen, so dass der Verlust einer Art mehr für die Diversität bedeutet als nur den reinen Verlust eines Taxons. Er kann ebenso den Verlust anderer Arten des gleichen oder eines anderen trophischen Levels zur Folge haben sowie die Abschwächung oder sogar den Verlust von verschiedenen Selektionsdrücken. Wir geben einen Überblick über die Diskussionen zu trophischen Interaktionen in einer sich verändernden Welt in Bezug auf (i) die Skala der Ökosystemantwort auf Umweltveränderungen mit Betonung des Bodensubsystems, (ii) die Verbindung zwischen ober- und unterirdischen Subsystemen und (iii) die natürliche Selektion und die Stabilität der Gemeinschaftsstruktur sowie der Ökosystemfunktion. Wir diskutieren die Notwendigkeit isolierte Subdisziplinen der Ökologie zusammen zu führen, um die Implikationen des globalen Wandels für Ökosystemprozesse zu verstehen.  相似文献   


9.
Vandenbos RE  Tonn WM  Boss SM 《Oecologia》2006,148(4):573-582
Although density-dependent mechanisms in early life-history are important regulators of recruitment in many taxa, consequences of such mechanisms on other life-history stages are poorly understood. To examine interacting and cascading effects of mechanisms acting on different life-history stages, we stocked experimental ponds with fathead minnow (Pimephales promelas) at two different densities. We quantified growth and survival of the stocked fish, the eggs they produced, and the resulting offspring during their first season of life. Per-capita production and survival of eggs were inversely related to density of stocked fish; significant egg cannibalism by stocked minnows resulted in initial young-of-the-year (YOY) densities that were inversely related to adult densities. Subsequent growth and survival of YOY were then inversely related to these initial YOY densities, and survival of YOY was selective for larger fish. Because of these compensatory processes in the egg and YOY stages, treatments did not differ in YOY abundance and mean size at the end of the growing season. Because of differences in the intensity of size-selective mortality, however, variation in end-of season sizes of YOY was strongly (and inversely) related to densities of stocked fish. When mortality was severe in the egg stage (high densities of stocked fish), final YOY size distributions were more variable than when the dominant mortality was size-selective in the YOY stage (low stocked fish densities). These differences in size variation could have subsequent recruitment consequences, as overwinter survival is typically selective for YOY fish larger than a critical threshold size. Density-dependent effects on a given life stage are not independent, but will be influenced by earlier stages; alternative recruitment pathways can result when processes at earlier stages differ in magnitude or selectivity. Appreciation of these cascading effects should enhance our overall understanding of the dynamics of stage-structured populations.  相似文献   

10.
11.
Crab: snail size-structured interactions and salt marsh predation gradients   总被引:4,自引:0,他引:4  
We studied size-structured predator-prey interactions between blue crabs (Callinectes sapidus) and marsh periwinkles (Littoraria irrorata) with a combination of field studies, laboratory experiments and individual-based modeling. Size distributions of Littoraria differed among years at the same sites in a salt marsh and could largely be explained by dominance of strong cohorts in the population. At a given site, abundance increased with elevation above tidal datum. Size-selective predation by blue crabs does not appear to be an important regulator of snail size distributions but may have a major effect on local abundance. Laboratory studies indicated that predator-prey interactions between Callinectes and Littoraria are strongly size-dependent. Crabs were generally effective at feeding on periwinkles at size ratios greater than approximately 6 (crab width: snail length). At lower size ratios crabs were far less effective at manipulating the snails, which often survived but with damaged shells. An individual-based model which incorporated information about incidence of snail shell scarring (resulting from non-lethal interactions) and snail density, predicted reduced predation rates and smaller average crab size with distance from the low tide refugium for crabs.  相似文献   

12.
Limestone applications to the catchment of one tributary to Woods Lake were highly effective in reducing stream acidity and stabilizing seasonal fluctuations in pH. The resulting improvement in stream water quality also led to a dramatic shift in reproductive strategy of the Woods Lake brook trout population. Prior to catchment liming, brook trout in Woods Lake were restricted to spawning on poor quality near shore substrate with limited ground water seepage. Reproductive success was limited by high mortality of eggs and larvae and recruitment from in lake spawning was not successful. Spawning brook trout did not utilize the tributary for spawning prior to watershed liming. Mitigation of acidity in the tributary, by catchment liming, effectively extended the spawning habitat available to the Woods Lake brook trout population and one year following treatment brook trout spawned successfully in the tributary for the first time in 6 years of observation. Significant recruitment of young trout into the lake population occurred from 1991 through 1993, although the absolute number of fish captured was relatively small. In the fall of 1993, four year classes of naturally spawned brook trout were present in the lake. Although reproductive success was enhanced by improving tributary spawning habitat in the Woods Lake basin, self maintenance of the population may be limited by low recruitment rates of young trout, due to high levels of summer mortality resulting from predation. Mitigation of this constraint would require substantially higher levels of fry production than were observed in Woods Lake and/or enhanced refugia for young trout. The results of this experiment suggest that re-establishment of tributary spawning populations of brook trout may be possible, with future reductions in acidic deposition, in acidic Adirondack lakes with limited in-lake spawning habitat.  相似文献   

13.
The rate and scale of human-driven changes can exert profound impacts on ecosystems, the species that make them up and the services they provide that sustain humanity. Given the speed at which these changes are occurring, one of society's major challenges is to coexist within ecosystems and to manage ecosystem services in a sustainable way. The effect of possible scenarios of global change on ecosystem services can be explored using ecosystem models. Such models should adequately represent ecosystem processes above and below the soil surface (aboveground and belowground) and the interactions between them. We explore possibilities to include such interactions into ecosystem models at scales that range from global to local. At the regional to global scale we suggest to expand the plant functional type concept (aggregating plants into groups according to their physiological attributes) to include functional types of aboveground–belowground interactions. At the scale of discrete plant communities, process-based and organism-oriented models could be combined into “hybrid approaches” that include organism-oriented mechanistic representation of a limited number of trophic interactions in an otherwise process-oriented approach. Under global change the density and activity of organisms determining the processes may change non-linearly and therefore explicit knowledge of the organisms and their responses should ideally be included. At the individual plant scale a common organism-based conceptual model of aboveground–belowground interactions has emerged. This conceptual model facilitates the formulation of research questions to guide experiments aiming to identify patterns that are common within, but differ between, ecosystem types and biomes. Such experiments inform modelling approaches at larger scales. Future ecosystem models should better include this evolving knowledge of common patterns of aboveground–belowground interactions. Improved ecosystem models are necessary tools to reduce the uncertainty in the information that assists us in the sustainable management of our environment in a changing world.

Zusammenfassung

Rate und Ausmaß menschen-gemachter Veränderungen wirken sich auf Ökosysteme, die Arten die diese zusammensetzen und Ökosystemfunktionen von denen die Menschheit abhängt aus. Angesichts der Geschwindigkeit dieser Veränderungen ist es eine der großen Herausforderungen der Gesellschaft miteinander und in Ökosystemen zu leben und deren Ökosystemfunktionen nachhaltig zu nutzen. Die Auswirkungen plausibler Szenarien des Globalen Wandels auf Ökosystemfunktionen können mit Hilfe von Ökosystemmodellen untersucht werden. Solche Modelle sollten die Ökosystemprozesse oberhalb und unterhalb der Erdoberfläche („oberirdisch und unterirdisch“) und die Interaktionen zwischen diesen Prozessen angemessen abbilden. Auf Skalenebenen, die von global bis lokal reichen, erkunden wir in diesem Artikel Möglichkeiten solche Interaktionen in Modelle einzubauen. Auf der regionalen bis globalen Ebene schlagen wir vor das Konzept der funktionellen Pflanzentypen (Pflanzenarten, die aufgrund von physiologischen Ähnlichkeiten in Gruppen zusammengefasst sind) auszudehnen, so dass Typen von oberirdisch-unterirdischen Interaktionen mitenthalten sind. Auf der Skalenebene eigenständiger Pflanzengesellschaften könnten prozessbasierte und organsimen-orientierte Modelle zu „Hybridmodellen“verschmolzen werden, die organismen-orientierte, mechanistische Abbildungen einiger trophischer Interaktionen enthalten, aber ansonsten prozess-basiert sind. Der Einfluss des Globalen Wandels auf die Häufigkeit und Aktivität von Organismen und die Ökosystemprozesse, die sie bestimmen, ist sehr wahrscheinlich häufig nicht-linear, so dass im Idealfall explizites Wissen über die Organismen und ihre Reaktionen in Modellen enthalten sein sollte. Auf der Skalenebene der einzelnen Pflanze hat sich ein gebräuchliches, organismen-basiertes Konzeptmodell der oberirdisch-unterirdisch Interaktionen herausgebildet. Dies erleichtert die Formulierung von Hypothesen und Fragestellungen in Experimenten, die nach gemeinsamen Mustern innerhalb von Ökosystemen und Unterschieden zwischen Ökosystemtypen und Biomen suchen. Dies ist die Basis für Modellierungsansätze auf größeren Skalenebenen. Zukünftige Ökosystemmodelle sollten die gemeinsamen Muster oberirdisch-unterirdischer Interaktionen besser berücksichtigen, die sich neuerdings abzuzeichnen beginnen. Verbesserte Ökosystemmodelle sind notwendige Werkzeuge um die Unsicherheit in der Information zu vermindern, auf der nachhaltiges Umweltmanagement in einer sich wandelnden Welt beruht.  相似文献   

14.
Whether the primary role of bacterioplankton is to act as "remineralizers" of nutrients or as direct nutritional source for higher trophic levels will depend on factors controlling their production and abundance. In tropical lakes, low nutrient concentration is probably the main factor limiting bacterial growth, while grazing by microzooplankton is generally assumed to be the main loss factor for bacteria. Bottom-up and top-down regulation of microbial abundance was studied in six nutrient limitation and dilution gradient-size fractionation in situ experiments. Bacteria, heterotrophic nanoflagellates (HNF), ciliates and rotifers showed relatively low densities. Predation losses of HNF and ciliates accounted for a major part of their daily production, suggesting a top-down regulation of protistan populations by rotifers. Phosphorus was found to be strongly limiting for bacterial growth, whereas no response to enrichment with Nitrogen or DOC was detected. HNF were the major grazers on bacteria (g-0.43 d(-1)), the grazing coefficient increased when ciliates were added (g- 0.80 d(-1)) but decreased when rotifers were added (g- 0.23 d(-1)) probably due to nutrient recycling or top-down control of HNF and ciliates by rotifers.  相似文献   

15.
Abstract When settlement of pelagic juveniles of reef fishes is highly and predictably seasonal, annual, end-of-season surveys of surviving recruits (which are commonly used on the Great Barrier Reef) are useful for assessing recruitment dynamics and their demographic effects. However, when settlement is continuous or weakly seasonal, with patterns that vary both between species and within species among years, regular, sometimes year-round, recruitment surveys at intervals linked to short-term settlement dynamics are needed to quantify fluctuations in recruitment strength. Monthly recruitment surveys may be appropriate in the tropical northwest Atlantic, where settlement is often both lunar periodic, and broadly and variably seasonal. Use of a variety of recruit-census methods impedes comparisons of recruitment patterns and their demographic effects, because recruit densities and recruit:adult ratios cannot be directly compared when recruits (because they have widely varying post-settlement ages) have experienced very different levels of early post-settlement mortality. Examining the relationship between changes in adult populations and annual, end-of-season recruitment may be satisfactory for long-lived species with strong settlement seasonality and maturation times of approximately 1 year. However, it is inappropriate for short-lived, rapidly maturing species, particularly those that have broad and variable settlement seasons and whose populations fluctuate substantially throughout the year in response to short-term fluctuations in recruitment. Comparisons of demographic effects of recruitment among species with different longevity require the use of non-arbitrary time scales, such as the time to maturity and the adult half-life.  相似文献   

16.
This study provides insight into the importance of top carnivores (top-down control) and nutrient inputs (bottom-up control) in structuring food chains in a terrestrial grassland system. Qualitative predictions about food chain structure are generated using 4 simple models, each differing in assumptions about some key component in the population dynamics of the herbivore trophic level. The four model systems can be classified broadly into two groups (1) those that assume plant resource intake by herbivores is limited by search rate and handling time as described by classic Lotka-Volterra models; and (2) those that assume plant resource intake by herbivores is limited externally by the supply rate of resources as described by alternatives to Lotka-Volterra formulations. The first class of models tends to ascribe greater importance to top-down control of food chain structure whereas the second class places greater weight on bottom-up control. I evaluated the model predictions using experimentally assembled grassland food chains in which I manipulated nutrient inputs and carnivore (wolf spider) abundance to determine the degree of top-down and bottom-up control of grassland plants and herbivores (grasshoppers). The experimental results were most consistent with predictions of the second class of models implying a predominance of bottom-up control of food chain structure.  相似文献   

17.
Mark H. Olson 《Oecologia》1996,108(4):757-763
Predator-prey interactions among size-structured populations may be strongly influenced by factors which affect growth rates of prey. I examined the importance of prey growth in the interaction between large-mouth bass (Micropterus salmoides) and their prey, bluegill (Lepomis macrochirus), by analyzing diets and growth rates of bass in a set of seven lakes in south-central Wisconsin. Sizes of bluegill consumed by bass changed dramatically across a gradient of bluegill growth, which resulted in differing patterns of bass growth. In lakes with slow bluegill growth, small bass fed on the youngest bluegill cohort, but large bass were capable of feeding on several age classes. Consequently, bass growth rates were strongly size-dependent; small bass ate small prey and had low growth, but growth rates increased substantially with size as bass ate progressively larger prey. When bluegill had high growth rates, they quickly reached a size refuge from predation and bass of all sizes were restricted to feeding on the youngest/smallest prey. In these lakes, bass growth rates were more uniform across bass sizes. Because growth rates influence population size-distributions, variation in bluegill growth can have strong effects on the structure of bass populations. These effects could potentially feed back to further influence the interaction between predator and prey.  相似文献   

18.
Temporal variation in foraging group structure of a fish assemblage was examined in a flood-prone stream in southern Hokkaido, Japan. Foraging behaviour was observed underwater for four species which inhabit the water column: ayu, Plecoglossus altivelis, white-spotted charr, Salvelinus leucomaenis, masu salmon, Oncorhynchus masou, and Japanese dace, Tribolodon hakonensis, with each species being categorized into five size classes (species-size group; SSG). Based on foraging behaviour, each SSG of the fish assemblage was classified into one of four foraging groups: algae grazers, drift foragers, benthos-drift foragers, and omnivores, defined as SSG exhibiting similar foraging behaviour. All size classes of ayu, and of charr and salmon were categorized as algae grazers and drift foragers, respectively, throughout the study period. In contrast, size classes of dace were categorized as drift foragers, benthos-drift foragers, or omnivores with the same size classes often assigned to different foraging groups from month to month. Digestive tract contents of the fishes in the four foraging groups reflected their observed foraging behaviour, and foraging groups were therefore regarded as representing trophic groups. Abundance and membership of each foraging group varied in accordance with changes in abundance of SSG due to their growth, immigration, emigration, and/or mortality. Moreover, due to numerical dominance within the assemblage, plasticity in foraging behaviour of small- and medium-sized dace also played a key role in determining variability in the foraging group structure. Relative frequencies of two types of foraging behaviour, algae nipping and benthos foraging, of the small-sized dace were significantly correlated with the level of each resource, whereas no significant relationship was detected between foraging frequencies of the medium-sized dace and either resource. Fluctuations in foraging group structure within this assemblage occurred through niche shifts of some component members and by changes in SSG composition.  相似文献   

19.
There is increasing evidence that nitrogen limitation is of widespread occurrence in tropical lakes. Nonetheless, data on the deep tropical Lake Alchichica (Mexico) show that dissolved inorganic nitrogen (DIN) to soluble reactive phosphorus (SRP) ratio fluctuates widely. To elucidate further the role of nitrogen and phosphorus limitation on the phytoplankton growth in tropical saline lakes, we present the results of a series of nutrient enrichment experiments with natural assemblages of Lake Alchichica phytoplankton conducted monthly for a year. Our assays indicate that phosphorus and nitrogen alternate in limiting Lake Alchichica phytoplankton biomass. Phosphorous limited phytoplankton growth most (41.7%) of the time, followed by nitrogen (33.3% of the time), and both nutrients for the rest of the time (25.0%). This alternation in nitrogen and phosphorus responsible for phytoplankton growth limitation in Lake Alchichica is attributed to the combination of natural conditions (e.g., young volcanic terrain rich in phosphorus) that would favor nitrogen limitation and anthropogenic impacts (e.g., agricultural nitrogen fertilization) which would cause phosphorus limitation. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

20.
The dynamics of nutrient transformations at the soil-root interface are complex but amenable to controlled experimental study. Using a conceptual model we introduce a series of papers which ascertain the role of microfloral-faunal trophic interactions in carbon, nitrogen, and phosphorus transformations in soil microcosms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号