首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Infection of alfalfa by the soil bacterium Rhizobium meliloti proceeds by deformation of root hairs and bacterial invasion of host tissue by way of an infection thread. We studied an 8.7-kilobase (kb) segment of the R. meliloti megaplasmid, which contains genes required for infection. Site-directed Tn5 mutagenesis was used to examine this fragment for nodulation genes. A total of 81 R. meliloti strains with mapped Tn5 insertions in the 8.7-kb fragment were evaluated for nodulation phenotype on alfalfa plants; 39 of the insertions defined a 3.5-kb segment containing nodulation functions. Of these 39 mutants, 37 were completely nodulation deficient (Nod-), and 2 at the extreme nif-distal end were leaky Nod-. Complementation analysis was performed by inoculating plants with strains carrying a genomic Tn5 at one location and a plasmid-borne Tn5 at another location in the 3.5-kb nodulation segment. Mutations near the right border of the fragment behaved as two distinct complementation groups. The segment in which these mutations are located was analyzed by DNA sequencing. Several open reading frames were found in this region, but the one most likely to function is 1,206 bases long, reading from left to right (nif distal to proximal) and spanning both mutation groups. The genetic behavior of this segment may be due either to the gene product having two functional domains or to a recombinational hot spot between the apparent complementation groups.  相似文献   

4.
In genetic studies on the catabolism of acetoin in Alcaligenes eutrophus, we used Tn5::mob-induced mutants which were impaired in the utilization of acetoin as the sole carbon source for growth. The transposon-harboring EcoRI restriction fragments from 17 acetoin-negative and slow-growing mutants (class 2a) and from six pleiotropic mutants of A. eutorphus, which were acetoin-negative and did not grow chemolithoautotrophically (class 2b), were cloned from pHC79 gene banks. The insertions of Tn5 were mapped on four different chromosomal EcoRI restriction fragments (A, C, D, and E) in class 2a mutants. The native DNA fragments were cloned from a lambda L47 or from a cosmid gene bank. Evidence is provided that fragments A (21 kilobase pairs [kb]) and C (7.7 kb) are closely linked in the genome; the insertions of Tn5 covered a region of approximately 5 kb. Physiological experiments revealed that this region encodes for acetoin:dichlorophenol-indophenol oxidoreductase, a fast-migrating protein, and probably for one additional protein that is as yet unknown. In mutants which were not completely impaired in growth on acetoin but which grew much slower and after a prolonged lag phase, fragments D (7.2 kb) and E (8.1 kb) were inactivated by insertion of Tn5::mob. No structural gene could be assigned to the D or E fragments. In class 2b mutants, insertions of Tn5 were mapped on fragment B (11.3 kb). This fragment complemented pleiotropic hno mutants in trans; these mutants were impaired in the formation of a rpoN-like protein. The expression of the gene cluster on fragments A and C seemed to be rpoN dependent.  相似文献   

5.
Rhodobacter capsulatus mutants unable to fix nitrogen were isolated by random transposon Tn5 mutagenesis. The Tn5 insertion sites of 30 Nif- mutants were mapped within three unlinked chromosomal regions designated A, B, and C. The majority of Tn5 insertions (21 mutants) map within nif region A, characterized by two ClaI fragments of 2.5 and 25 kilobases (kb). The 17-kb ClaI fragment of nif region B contains six nif::Tn5 insertions, and the three remaining mutations are located on a 32-kb ClaI fragment of nif region C. Hybridization experiments using all 17 Klebsiella pneumoniae nif genes individually as probes revealed homology to nifE, nifS, nifA, and nifB in nif region A. The nifHDK genes were localized in nif region B. About 2 kb away from this operon, a second copy of the DNA fragments homologous to nifA and nifB, originally found in nif region A, was identified.  相似文献   

6.
We have physically and genetically characterized 20 symbiotic and 20 auxotrophic mutants of Rhizobium meliloti, the nitrogen-fixing symbiont of alfalfa (Medicago sativa), isolated by transposon Tn5 mutagenesis. A "suicide plasmid" mutagenesis procedure was used to generate TN-5-induced mutants, and both auxotrophic and symbiotic mutants were found at a frequency of 0.3% among strains containing random TN5 insertions. Two classes of symbiotic mutants were isolated: 4 of the 20 formed no nodules at all (Nod-), and 16 formed nodules which failed to fix nitrogen (Fix-). We used a combination of physical and genetic criteria to determine that in most cases the auxotrophic and symbiotic phenotypes could be correlated with the insertion of a single Tn5 elements. Once the Tn5 element was inserted into the R. meliloti genome, the frequency of its transposition to a new site was approximately 10-8 and the frequency of precise excision was less than 10-9. In approximately 25% of the mutant strains, phage Mu DNA sequences, which originated from the suicide plasmid used to generate the Tn5 transpositions, were also found in the R. meliloti genome contiguous with Tn5. These later strains exhibited anomalous conjugation properties, and therefore we could not correlate the symbiotic phenotype with a Tn5 insertion. In general, we found that both physical and genetic tests were required to fully characterize transposon-induced mutations.  相似文献   

7.
We have isolated and characterized Tn3HoHo1- and Tn5-induced mutants of a cosmid clone, pYDH208, which encodes the mannopine (MOP) cyclase-associated catabolism of MOP and agropine (AGR). Characterization of the transposon-induced lacZ fusion mutants by beta-galactosidase activity and mannityl opine utilization patterns identified at least 6 genetic units associated with the catabolism of these opines. Functions for the catabolism of MOP and mannopinic acid are encoded by a 16.4-kb region, whereas those for AGR are encoded by a 9.4-kb region located within the MOP catabolic locus. The induction pattern of catabolism shown by transposon insertion derivatives suggests that the catabolism of MOP, AGR, and mannopinic acid encoded by pYDH208 is regulated by at least two independent control elements. Kinetic uptake assays indicate that the clone encodes two transport systems for MOP and AGR, one constitutive and slow and the other inducible and rapid. Analysis of beta-galactosidase activities from lacZ reporter gene fusions indicated that expression of mannityl opine catabolic genes is not strongly repressed by sugars but is repressed by succinate when ammonium is the nitrogen source. The repression exerted by succinate was relieved when MOP was supplied as the sole source of nitrogen. This suggests that genes for opine catabolism encoded by pYDH208 are regulated, in part, by nitrogen availability.  相似文献   

8.
A Tn5 mutant strain of Sinorhizobium meliloti with an insertion in tpiA (systematic identifier SMc01023), a putative triose phosphate isomerase (TPI)-encoding gene, was isolated. The tpiA mutant grew more slowly than the wild type on rhamnose and did not grow with glycerol as a sole carbon source. The genome of S. meliloti wild-type Rm1021 contains a second predicted TPI-encoding gene, tpiB (SMc01614). We have constructed mutations and confirmed that both genes encode functional TPI enzymes. tpiA appears to be constitutively expressed and provides the primary TPI activity for central metabolism. tpiB has been shown to be required for growth with erythritol. TpiB activity is induced by growth with erythritol; however, basal levels of TpiB activity present in tpiA mutants allow for growth with gluconeogenic carbon sources. Although tpiA mutants can be complemented by tpiB, tpiA cannot substitute for mutations in tpiB with respect to erythritol catabolism. Mutations in tpiA or tpiB alone do not cause symbiotic defects; however, mutations in both tpiA and tpiB caused reduced symbiotic nitrogen fixation.  相似文献   

9.
浑球红细菌谷氨酸合酶基因(glt)的克隆和图谱分析   总被引:4,自引:1,他引:4  
利用转座子Tn5随机插入诱变筛选得到12株浑球红细菌(Rhodobacter sphaeroides)氨同化缺陷突变株(Asm~-)。这些突变株胞内均无GOGAT活性,同时它们均无固氮酶活性(Nif~-),并且具有氮代谢多效性缺失表型(Ntr~-)。将含有Azorhizobium sesbaniae ORS571的完整glt基因的质粒pHB10转入突变株中能互补上述表型。通过筛选携带Tn5的R-prime质粒克隆了glt::Tn5片段。Southern杂交证明所克隆glt::Tn5片段与E. coli的gltBD基因有同源性。用此片段与以pLAFR3为载体所构建的R. sphaeroides 601基因文库进行菌落原位杂交筛选到了携带glt基因的cosmid pLT27。pLT27能互补所有12株R.sphaeroides氨同化缺陷突变株。酶切分析表明在该cosmid中插人的染色体DNA片段大小约为26.5kb。以pRK415为载体亚克隆了4.0kb与10.5kh的pLT27的Hindlll酶切片段,分别命名为pLTRK271与pLTRK272。pLTRK272能互补变种GT6、GT10、GT11,pLTRK…  相似文献   

10.
11.
12.
Seven Tn5 induced mutants unable to use glutamate as sole carbon and nitrogen source were isolated from the effective Rhizobium leguminosarum bv. phaseoli strain P121-R. As indicated by restriction and hybridisation analysis, all the mutants arose from a single Tn5 insertion in the chromosome. The 14C-glutamate uptake rate of the mutants was 76 to 88% lower than that of strain P121-R. Inoculation of Phaseolus vulgaris cv. Labrador with these mutants significantly decreased shoot dry matter yield and the total nitrogen content respectively, as compared to inoculation with the parental strain P121-R. All the mutants formed nodules, however they were smaller, white to greenish and approximately 30% less numerous than those formed by strain P121-R. These observations suggest that glutamate transport and catabolism in R. leguminosarum bv. phaseoli P121-R may play an important role in the establishment of an effective symbiosis in field bean. None of the mutants isolated was an auxotroph. All mutants were unable to grow on aspartate suggesting that glutamate and aspartate, probably have the same transporter as indicated in Rhizobium meliloti and in Bacillus subtilis. All mutants readily used glutamine, proline, arginine as sole carbon and nitrogen source, but grew more slowly than the wild type strain. On the other hand, all the mutants were impaired in growth on histidine and -aminobutyrate as sole carbon and nitrogen source. As the catabolism of these amino acids occurs predominantly through glutamate, our results indicate that mutants are also impaired in their ability to use histidine and -aminobutyrate as a nitrogen source. Our results also suggest that other amino acids catabolized through the glutamate pathways may be an additional important carbon source for bacteroids in nodules.  相似文献   

13.
The Gram-negative bacterium Variovorax paradoxus strain B4 was isolated from soil under mesophilic and aerobic conditions to elucidate the so far unknown catabolism of mercaptosuccinate (MS). During growth with MS this strain released significant amounts of sulfate into the medium. Tn5::mob-induced mutagenesis was successfully employed and yielded nine independent mutants incapable of using MS as a carbon source. In six of these mutants, Tn5::mob insertions were mapped in a putative gene encoding a molybdenum (Mo) cofactor biosynthesis protein (moeA). In two further mutants the Tn5::mob insertion was mapped in the gene coding for a putative molybdopterin (MPT) oxidoreductase. In contrast to the wild type, these eight mutants also showed no growth on taurine. In another mutant a gene putatively encoding a 3-hydroxyacyl-coenzyme A dehydrogenase (paaH2) was disrupted by transposon insertion. Upon subcellular fractionation of wild-type cells cultivated with MS as sole carbon and sulfur source, MPT oxidoreductase activity was detected in only the cytoplasmic fraction. Cells grown with succinate, taurine, or gluconate as a sole carbon source exhibited no activity or much lower activity. MPT oxidoreductase activity in the cytoplasmic fraction of the Tn5::mob-induced mutant Icr6 was 3-fold lower in comparison to the wild type. Therefore, a new pathway for MS catabolism in V. paradoxus strain B4 is proposed: (i) MPT oxidoreductase catalyzes the conversion of MS first into sulfinosuccinate (a putative organo-sulfur compound composed of succinate and a sulfino group) and then into sulfosuccinate by successive transfer of oxygen atoms, (ii) sulfosuccinate is cleaved into oxaloacetate and sulfite, and (iii) sulfite is oxidized to sulfate.  相似文献   

14.
The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growth not only with the myo-isomer but also for growth with scyllo- and d-chiro-inositol as the sole carbon source. An additional, hypothetical dehydrogenase of the IdhA/MocA/GFO family encoded by the smc01163 gene was found to be essential for growth with scyllo-inositol, whereas the idhA-encoded myo-inositol dehydrogenase was responsible for the oxidation of d-chiro-inositol. The putative regulatory iolR gene, located upstream of iolCDEB, encodes a repressor of the iol genes, negatively regulating the activity of the myo- and the scyllo-inositol dehydrogenases. Mutants with insertions in the iolA, smc01163, and individual iolRCDE genes could not compete against the wild type in a nodule occupancy assay on alfalfa plants. Thus, a functional inositol catabolic pathway and its proper regulation are important nutritional or signaling factors in the S. meliloti-alfalfa symbiosis.  相似文献   

15.
16.
17.
Rhizobium meliloti is known to use betaines synthesized by its host, Medicago sativa, as osmoprotectants and sources of energy. It is shown in the present report that the symbiotic megaplasmid (pSym) of R. meliloti RCR2011 encodes functions essential to the catabolism of three betaines, trigonelline (nicotinic acid N-methylbetaine), stachydrine (proline betaine or dimethylproline), and carnitine (gamma-trimethyl-beta-hydroxybutyrobetaine). Preliminary evidence is presented showing that functions on pSym also influence the catabolism of choline and its oxidative product, glycine betaine. Genes implicated in betaine catabolism are found in the symbiotic region of pSym. Trigonelline catabolism functions lie between two clusters of symbiotic genes, nifKDH and nok/fixVI'. Stachydrine and carnitine functions lie to the right of trigonelline catabolism functions, immediately to the right of fixVI'. Information necessary to choline and glycine betaine catabolism is probably encoded to the right of stachydrine catabolism functions.  相似文献   

18.
Abstract The large plasmid DNAs were found in several strains of Pseudomonas sp. capable of growing on ε-caprolactam as a sole source of carbon and nitrogen. The ability to grow on ε-caprolactam and ε-aminocaproic acid as sole sources of carbon or nitrogen and adipic acid as a sole source of carbon could be transferred in interspecies crosses. All transconjugants harboured corresponding large plasmid DNAs. It was suggested that the discovered plasmids possessed the genetic material controlling several consecutive reactions of ε-caprolactam catabolism yielding acetate and succinate.  相似文献   

19.
The role of the dicarboxylic acid transport (dct) system in the Rhizobium meliloti-Alfalfa symbiosis was investigated. Mutants of R. meliloti CM2 unable to grow on medium containing succinate as the sole carbon source were isolated following chemical and transposon mutagenesis. These mutants were also unable to utilize malate or fumarate as the sole source of carbon. Transport studies with 14C-labelled succinate showed that the mutants were specifically defective in succinate transport. Revertants of both chemical and transposon mutants were obtained at a frequency of 10-5–10-6. The R. meliloti dct mutants were able to nodulate Alfalfa plants but the nodules formed were unable to fix nitrogen. Revertants of the mutants were fully effective on plants. The mutants unable to transport succinate were used to isolate dct genes from a R. meliloti gene bank. Two plasmids containing a common 26.5 Mdal insert were found to complement some of the mutants. The presence of this DNA insert in the complementing mutant strains restored their effectivenss of plants. This DNA fragment encoding succinate transport function(s) was used to produce genetically engineered R. meliloti strains with an increased rate of succinate uptake.Abbreviation dct dicarboxylic acid transport  相似文献   

20.
The gene encoding Rhizobium meliloti isocitrate dehydrogenase (ICD) was cloned by complementation of an Escherichia coli icd mutant with an R. meliloti genomic library constructed in pUC18. The complementing DNA was located on a 4.4-kb BamHI fragment. It encoded an ICD that had the same mobility as R. meliloti ICD in nondenaturing polyacrylamide gels. In Western immunoblot analysis, antibodies raised against this protein reacted with R. meliloti ICD but not with E. coli ICD. The complementing DNA fragment was mutated with transposon Tn5 and then exchanged for the wild-type allele by recombination by a novel method that employed the Bacillus subtilis levansucrase gene. No ICD activity was found in the two R. meliloti icd::Tn5 mutants isolated, and the mutants were also found to be glutamate auxotrophs. The mutants formed nodules, but they were completely ineffective. Faster-growing pseudorevertants were isolated from cultures of both R. meliloti icd::Tn5 mutants. In addition to lacking all ICD activity, the pseudorevertants also lacked citrate synthase activity. Nodule formation by these mutants was severely affected, and inoculated plants had only callus structures or small spherical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号