首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate the influence of flow and, thus, substrate delivery, on the ability of lung to metabolize foreign compounds, the disappearance of circulating [3H]benzo[a]pyrene ([3H]B[a]P) and the appearance of B[a]P metabolites was monitored in isolated rat lungs from control and 3-methylcholanthrene (3-MC) pretreated rats perfused at low (10 ml/min) and high (45 ml/min) flows. Increasing the flow or 3-MC pretreatment hastened the disappearance of B[a]P from the perfusion medium reservoir and increased the rate of appearance of total metabolites. However, these manipulations affected the appearance of individual metabolites in the medium in different ways. For example, in lungs from control rats the rate of appearance of 7,8-dihydrodiol (7,8-dihydroxy-7,8-dihydro-B[a]P) (7,8-DHD) in the perfusion medium was markedly increased by increasing flow while that of B[a]P-1,6-quinone was minimally affected. In addition, increasing flow increased the concentration of some B[a]P metabolites, such as 4,5-dihydrodiol (4,5-dihydroxy-4,5-dihydro-B[a]P) (4,5-DHD) in the lung tissue of control rats at the end of the perfusion period, but did not effect much change in the concentration of these metabolites in lungs from 3-MC-pretreated rats. The results show that flow, as well as 3-MC pretreatment, may alter the rate at which metabolism of foreign compounds occurs and the temporal profile of metabolites produced by the intact lung.  相似文献   

2.
Liver nuclei from 3-methylcholanthrene-treated rats in the presence of NADPH metabolized 3- and 9-hydroxybenzo[a]pyrene and 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene to products that bound to DNA. Maximal binding was obtained with the dihydrodiol which was approximately 3-fold that with 9-hydroxybenzo[a]pyrene, and 60-fold that with 3-hydroxybenzo[a]pyrene, as substrates. Both 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene and 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene were also extensively metabolized by the nuclear fraction but did not give rise to DNA-binding products.

The available evidence suggests that the DNA binding species derived from 9-hydroxy-benzo[a]pyrene is 9-hydroxy-benzo[a]pyrene-4,5-oxide and from 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene, as previously observed in different systems, 7,8-dihydro-7,8-dihydroxy-benzo[a]pyrene-9,10-oxide.  相似文献   


3.
Among the several thousand components of cigarette smoke is a substance or substances capable of inhibiting pulmonary metabolism of nicotine and altering the metabolite profile of procarcinogens such as benzo[a]pyrene (BP). This substance(s) inhibits BP metabolism in the lung in amounts present in a few puffs of cigarette smoke. By a series of extractions and chromatographic methods an active subfraction containing only 1% of the total cigarette smoke condensate (CSC), was isolated. This fraction demonstrated the same inhibition of BP metabolism in the isolate perfused lung (IPL) as the whole smoke. The inhibitor(s) present in this fraction possess amphoteric characteristics. The acidic function is believed to be a phenolic one.  相似文献   

4.
When [3H]benzo[a]pyrene is incubated in vitro together with DNA, NADPH and rat lung microsomes, covalent binding of benzo[a]pyrene (BP) metabolites to DNA occurs. These metabolite-nucleoside complexes can be resolved into several distinct peaks by elution of a Sephadex LH-20 column with a water-methanol gradient. 3-Methylcholanthrene (MC) pretreatment of animals induces the total covalent binding in vitro several-fold and increases the amounts of at least five metabolite-nucleoside complexes associated with the 7,8-diol-9,10-epoxidcs, the 7,8-oxide or quinones oxygenated further, the 4,5-oxide and phenols oxygenated further. These increases correspond well with the increases in the production of both non-K-region and K-region metabolites of BP by lung microsomes, as determined by highpressure liquid chromatography (HPLC). On the other hand, when [3H]BP is metabolized in isolated perfused rat lung, only the peak representing the 7,8-diol-9,10-epoxide bound to nucleoside(s) is readily detectable and then only in lungs from MC-treated animals. The extent of binding of BP metabolites to lung DNA is very low, about 0.0004% of the total dose applied to the perfusion medium; more than 60% of this can be accounted for by the binding of the 7,8-diol-9,10-epoxides to nucleoside(s). It is suggested that the further metabolism leading to metabolites not available to covalent binding, (e.g. conjugation) of primary BP metabolites in the intact tissue is responsible for the differences in the metabolite-nucleoside patterns observed in vivo, as compared with microsomal metabolism in vitro.  相似文献   

5.
Ellagic acid, a common plant phenol, was shown to be a potent inhibitor of epidermal microsomal aryl hydrocarbon hydroxylase (AHH) activity in vitro, and of benzo[a]pyrene (BP)-binding to both calf thymus DNA in vitro and to epidermal DNA in vivo. The in vitro addition of ellagic acid (0.25-2.0 microM) resulted in a dose-dependent inhibition of AHH activity in epidermal microsomes prepared from control or carcinogen-treated animals. The I50 of ellagic acid for epidermal AHH was 1.0 microM making it the most potent inhibitor of epidermal AHH yet identified. In vitro addition of ellagic acid to microsomal suspensions prepared from control or coal tar-treated animals resulted in 90% inhibition of BP-binding to calf thymus DNA. Application of ellagic acid to the skin (0.5-10.0 mumol/10 gm body wt) caused a dose-dependent inhibition of BP-binding to epidermal DNA. Our results suggest that phenolic compounds such as ellagic acid may prove useful in modulating the risk of cutaneous cancer from environmental chemicals.  相似文献   

6.
(±)-7β,8α-Dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-1) and (±)-7β,8α-dihydroxy-9α,10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (diol epoxide-2) are highly mutagenic diol epoxide diastereomers that are formed during metabolism of the carcinogen (±)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene. Remarkable stereoselectivity has been observed on metabolism of the optically pure (+)- and (?)-enantiomers of the dihydrodiol which are obtained by separation of the diastereomeric diesters with (?)-α-methoxy-α-trifluoromethylphenylacetic acid. The high stereoselectivity in the formation of diol epoxide-1 relative to diol epoxide-2 was observed with liver microsomes from 3-methylcholanthrene-treated rats and with a purified cytochrome P-448-containing monoxygenase system where the (?)-enantiomer produced a diol epoxide-2 to diol epoxide-1 ratio of 6 : 1 and the (+)-enantiomer produced a ratio of 1 : 22. Microsomes from control and phenobarbital-treated rats were less stereospecific in the metabolism of enantiomers of BP 7,8-dihydrodiol. The ratio of diol epoxide-2 to diol epoxide-1 formed from the (?)- and (+)-enantiomers with microsomes from control rats was 2 : 1 and 1 : 6, respectively. Both enantiomers of BP 7,8-dihydrodiol were also metabolized to a phenolic derivative, tentatively identified as 6,7,8-trihydroxy-7,8-dihydrobenzo[a]pyrene, which accounted for ~30% of the total metabolites formed by microsomes from control and phenobarbital-pretreated rats whereas this metabolite represents ~5% of the total metabolites with microsomes from 3-methylcholanthrene-treated rats. With benzo[a]pyrene as substrate, liver microsomes produced the 4,5-, 7,8- and 9,10-dihydrodiol with high optical purity (>85%), and diol epoxides were also formed. Most of the optical activity in the BP 7,8-dihydrodiol was due to metabolism by the monoxygenase system rather than by epoxide hydrase, since hydration of (±)-benzo[a]pyrene 7,8-oxide by liver microsomes produced dihydrodiol which was only 8% optically pure. Thus, the stereospecificity of both the monoxygenase system and, to a lesser extent, epoxide hydrase plays important roles in the metabolic activation of benzo[a]pyrene to carcinogens and mutagens.  相似文献   

7.
8.
Benzo[a]pyrene (BP) metabolism and the conjugation and DNA-binding of BP metabolites, was studied using isolated hepatocytes from mice maintained on a diet containing 2(3)-tert-butyl-4-hydroxyanisole (BHA) (7.5 g/kg food) to discover the mechanisms involved in the anticarcinogenic effects of this antioxidant. The antioxidant feeding produced: (a) profound differences in the BP metabolite pattern, (b) no increase in the levels of either the glucuronic acid, the sulfate or the glutathione conjugates and (c) a marked decrease in the level of BP metabolites bound to intracellular DNA. Therefore, the inhibition of DNA-binding observed after administration of BHA, may be due to the change in BP metabolism rather than to an increase in the conjugation of reactive metabolites.  相似文献   

9.
The present study was carried out to determine the effects of agents that influence benzo[a]pyrene (BP) metabolism in vitro on the irreversible binding of BP to rat hepatic macromolecules in vivo. The irreversible binding of [3H]BP was found to be both dose and time dependent after its intraperitoneal administration to male Wistar rats. The SKF 525-A, at doses of 50 and 75 mg/kg, ip 3 h before BP, decreased the level of binding from control by 31 and 34%, respectively. At 35 mg/kg, SKF-525-A had no effect. Diethyl maleate (0.6 mL/kg, ip) and cysteine (150 mg/kg, ip), 30 and 5 min before BP, respectively, did not alter the binding of BP from control. Oral methadone treatment, previously shown to increase selectively epoxide hydrase activity in male Wistar rats, also failed to alter the amount of BP bound to hepatic macromolecules. 3-Methylcholanthrene (20 mg/kg per day, ip, for 2 days) administered 24 h before BP, decreased the level of binding from control by 30%. Parallel in vitro studies were carried out with the various agents used in vivo.  相似文献   

10.
Mechanisms of co-carcinogenicity of particulates, such as iron oxide and asbestos, and benzo[a]pyrene (B[a]P) are not completely understood. Particulates dramatically alter rates of uptake of B[a]P into membranes, a factor which could account for co-carcinogenicity. However, B[a]P must be activated to reactive forms to be carcinogenic and mutagenic so alterations in metabolism of B[a]P by particulates also could result in co-carcinogenesis. To elucidate mechanisms of particulate-B[a]P co-carcinogenesis, we have correlated rates of uptake of B[a]P into microsomes with metabolism of B[a]P and with mutagenicity of B[a]P in the Ames test. In general, aryl hydrocarbon hydroxylase (AHH) activity paralleled rates of uptake of B[a]P, though some inhibition of AHH activity by particulates which was not attributable to availability of B[a]P was evident. This inhibition was studied further by assaying separately mixed function oxidase and epoxide hydrase activities in the presence of particulates. Both chrysotile and iron oxide inhibited O-deethylation of 7-ethoxyresorufin and hydration of B[a]P-4,5-oxide. To determine effects of this inhibition on activation of B[a]P to reactive forms, we studied profiles of metabolites of B[a]P and mutagenicity of B[a]P. The only alteration in profiles of B[a]P metabolites produced by particulates was that due to effects on rates of uptake. Similarly, mutagenicity of B[a]P was positively correlated with rates of uptake into microsomes. We conclude that the predominant effects of chrysotile and iron oxide are in altering rates of uptake of particle-adsorbed B[a]P. Changes in uptake rates then result in alterations of B[a]P metabolism and mutagenicity.  相似文献   

11.
Basal levels of aryl hydrocarbon hydroxylase, epoxide hydrolase and glutathione S-transferase enzyme activities, cytochrome P-450 content and inducibility of enzymes with phenobarbital were found to be similar in the microsomes of D. simulans mutant strain 364yv, which is sensitive to the toxic and mutagenic effects of benzo[a]pyrene (BP), and of the wild resistant Turku strain. In contrast, increases in the rate of BP turnover per molecule of cytochrome P-450, intensity of the hemoprotein band with apparent molecular weight 56,000 and the yield of BP 7,8-dihydrodiol and 9,10-dihydrodiol occurred only in microsomes of BP-pretreated 364yv flies but not of Turku ones. It is likely that BP induces an aberrant form of cytochrome P-450 in 364yv flies with a rare mutation in one of the P-450 regulating genes.  相似文献   

12.
The proportions of individual benzo[a]pyrene (BaP)-DNA adducts present in rodent embryo cell cultures change with the length of time of exposure to BaP; the major alteration is an increase in the proportion of (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BaPDE)-deoxyguanosine (dG) adduct (Sebti et al., Cancer Res., 45 (1984) 1594-1600). To determine if this change in the BaP-DNA adducts could result from the induction of enzymes involved in oxidation of BaP, hamster embryo cell cultures were exposed to acetone or BaP for 24 h and then the medium was replaced with fresh medium containing [3H]BaP. After 5 h the BaP-pretreated cells had a 30% higher level of binding of BaP to DNA and formed a greater proportion of (+)-anti-BaPE-dG adduct than the acetone-pretreated control group. Cells pretreated for 24 h with BaP and then exposed to [3H]BaP and Actinomycin D for 5 h had a lower level of binding of BaP to DNA and a lower amount of (+)-anti-BaPDE-deoxyguanosine adduct than cells pretreated with acetone and exposed to [3H]BaP for 5 h. In contrast, pretreatment for 24 h with BaP plus Actinomycin D followed by a 5-h exposure to [3H]BaP resulted in a decrease in overall binding of BaP to DNA but had no effect on the amount of (+)-anti-BaPDE-deoxyguanosine adduct. Actinomycin D treatment had no significant effect on either the total amount of BaP metabolized, the formation of primary and water-soluble BaP metabolites, or cell viability, but reduced [3H]uridine incorporation into RNA by more than 65% at all times. These results suggest that induction of specific isozymes of cytochrome P-450 may be involved in the time-dependent increase in the proportion of (+)-anti-BaPDE-DNA adducts in BaP-treated cells. The state of induction of specific isozymes of cytochrome P-450 and the ability of the BaP dose applied to induce them may be major factors in determining the proportion of BaP metabolized to (+)-anti-BaPDE, the most carcinogenic stereoisomer of BaPDE.  相似文献   

13.
Benzo[a]pyrene is metabolised by isolated viable hepatocytes from both untreated and 3-methylcholanthrene pretreated rats to reactive metabolites which covalently bind to DNA. The DNA from the hepatocytes was isolated, purified and enzymically hydrolysed to deoxyribonucleosides. The hydrocarbon-deoxyribonucleoside products after initial separation, on small columns of Sephadex LH-20, from unhydrolysed DNA, oligonucleotides and free bases, were resolved by high pressure liquid chromatography (HPLC). The qualitative nature of the adducts found in both control and pretreated cells was virtually identical; however pretreatment with 3-methylcholanthrene resulted in a quantitatively higher level of binding. The major hydrocarbon-deoxyribonucleoside adduct, found in hepatocytes co-chromatographed with that obtained following reaction of the diol-epoxide, (±)7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene with DNA. Small amounts of other adducts were also present including a more polar product which co-chromatographed with the major hydrocarbon-deoxyribonucleoside adduct formed following microsomal activation of 9-hydroxybenzo[a]pyrene and subsequent binding to DNA. In contrast to the results with hepatocytes, when microsomes were used to metabolically activate benzo[a]pyrene, the major DNA bound-product co-chromatographed with the more polar adduct formed upon further metabolism of 9-hydroxybenzo[a]pyrene. These results illustrate that great caution must be exercised in the extrapolation of results obtained from short-term mutagenesis test systems, utilising microsomes, to in vivo carcinogenicity studies.  相似文献   

14.
The fate of [4-14C]-cortisol and [16,16 alpha-3H]-beclomethasone dipropionate following intratracheal application of the substrates into isolated perfused rat lungs was studied. Both substrates were transferred to the perfusion medium, cortisol at a much higher rate than beclomethasone dipropionate. The proportion of different metabolites of the total radioactivity was larger with beclomethasone dipropionate in both the perfusion medium and the lung tissue. The lungs are considered to have a catabolic role in cortisol metabolism.  相似文献   

15.
The oxidative metabolism of benzo[a]pryrene (B[a]P) phenols catalyzed by liver microsomes in vitro leads to multiple products. High-pressure liquid chromatography analysis of the organic-soluble products formed indicates that regardless of the animal pretreatment regime, 3-hydroxy-B[a]P is metabolized to the 3,6-quinone and to a hydroxylated derivative tentatively identified as 3,9-dihyroxy-B[a]P. However, the distribution of products obtained with 9-hydroxy-B[a]P varied with animal pretreatment. A maximum of three distinct metabolites was obtained when the 9-phenol was metabolized in vitro with microsomes from phenobarbital-pretreated rats and the tentative 3,9-dihydroxy derivative was a common metabolite for all pretreatment regimes. Physical characterization, including mass spectrometry, indicates that all three products have an extra oxygen atom incorporated into their molecular structure from molecular oxygen. Studies utilizing specific inhibitors of the cytochrome P-450-dependent monooxygenase clearly suggest that the formation of dihydroxy or phenol-oxide derivatives is catalyzed by the hemoprotein, cytochrome P-450. These metabolites of the benzo[a]pyrene phenols are most likely related to the putative phenol-oxides of benzo[a]pyrene which have been demonstrated to alkylate DNA and protein. Repetitive scan difference spectrophotometric analysis of incubation mixtures containing rat liver microsomes, 3- or 9-hydroxy-B[a]P, NADPH, and oxygen shows the conversion of the phenols into products which absorb in the region from 400 to 500 nm. During and after the steady state of the reaction, it can be seen that certain of the hydroxy compounds produced are in equilibrium with their respective quinone form and may be involved in an oxygen-coupled redox cycle.  相似文献   

16.
Liver microsomal enzymes are essential for the detection of benzo[a]pyrene (B[a]P)-mediated mutagenesis in the Salmonella/mammalian microsome mutagenicity test and, furthermore, this mutagenicity is considerably enhanced by induction of hepatic enzymes involved with drug metabolism. Although Aroclor 1254 is most commonly used for induction of S9 enzymes, DDT is also capable of this induction. This paper reports a comparison of liver S9 fraction induced by the two agents: there is a marked difference in their concentration optima for metabolism of B[a]P; greater numbers of revertant colonies are seen with Aroclor-induced S9, which is optimal at a concentration of 10% (v/v), whereas DDT-induced S9 is optimal at 2.5% (v/v); Aroclor induces aryl hydrocarbon hydroxylase (AHH), cytochrome P-450 and epoxide hydrase while DDT induces only AHH, to about half the level detected in the Aroclor-induced S9 fraction. A comparison of metabolite distribution for Aroclor- and DDT-induced hepatic microsomes reveals quantitative differences only. DDT-induced microsomes yield a greater proportion of B[a]P-4,5-oxide and its metabolic product B[a]P-4,5-dihydrodiol than do Aroclor-induced microsomes. Time course studies on the mutagen half-life measured on the agar plate provides good evidence that metabolites responsible for mutagenicity were different for each inducer.  相似文献   

17.
In cultured fetal human adrenocortical cells, metabolism of the carcinogen benzo[a]pyrene was found to be unresponsive to the xenobiotic inducers 3-methylcholanthrene, benz[a]anthracene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, exposure of cultures to the hormone adrenocorticotropin (ACTH) for 48 hours stimulated benzo[a]pyrene metabolism 3-fold. The major metabolite was the 7,8-diol. Other compounds which stimulate the production of adrenocortical cell cyclic AMP (forskolin and cholera toxin) as well as monobutyryl cyclic AMP also increased benzo[a]pyrene metabolism. Human adrenocortical cells thus provide an unusual example of hormonal regulation of the metabolism of a carcinogen.  相似文献   

18.
B(a)P is an ubiquitous potent carcinogen that has been associated with the increased incidence of human bronchiogenic carcinoma in occupational and urban populations. An isolated perfused rabbit lung preparation (IPL) was used to study the influence of pretreatment with a cocarcinogen, n-dodecane, on the metabolism of benzo (a)-pyrene (B(a)P). 14C-B(a)P was administered intratracheally to the IPL following biweekly inhalation exposure of the rabbits to n-dodecane. Results from n-dodecane pretreatment group were compared to those from the no-pretreatment group and an intratracheally administered B(a)P pretreatment group (B(a)P IT). Metabolites were isolated from serial blood samples up to 3 hours after administration of the 14C-B(a)P to the IPL. Patterns of B(a)P metabolites were determined using thin layer and high performance liquid chromatography, and liquid scintillation counting. The rates of appearance of B(a)P metabolites in the blood and the B(a)P metabolic pattern for n-dodecane groups were compared to B(a)P IT and no-pretreatment groups. The rates of appearance of metabolites in the blood (ng/hr/g of lung) were similar for B(a)P IT and n-dodecane pretreatment groups, but were five and four times greater, respectively, when compared to rates of appearance of metabolites for the no-pretreatment group. The B(a)P metabolic pattern of n-dodecane pretreatment showed an increase in the dihydrodiol and nonextractable formation and a decrease in the monohydroxy and diones compared to the no-pretreatment group. The metabolite pattern for B(a)P IT pretreatment group was similar to the metabolite pattern for the n-dodecane pretreatment group. The significance of the findings is that a known cocarcinogen, n-dodecane, appears to be as good an enzyme inducer as B(a)P in stimulating metabolism of B(a)P in lung. Therefore, man's risk in developing cancer may not be solely a result of exposure to a carcinogen, but may be dependent upon other constituents in his environment.  相似文献   

19.
The metabolism of benzo[a]pyrene by halogenated biphenyl-induced rat hepatic microsomal monooxygenases was determined using a high pressure liquid chromatographic assay system. Incubation of benzo[a]pyrene with microsomes from rats pretreated with phenobarbitone or phenobarbitone-type inducers (2,2',4,4',5,5'-hexachlorobiphenyl, 2,2',4,4',6,6'-hexachlorobiphenyl, 2,2',5,5'-tetrachlorobiphenyl, 2,2',4,4',5,5'-hexabromobiphenyl, and 2,2',5,5'-tetrabromobiphenyl) resulted in increased overall metabolism of the hydrocarbon (less than fourfold) into phenolic, quinone, and diol metabolites, with the most striking increase observed in the formation of 4,5-dihydro-4,5-dihydroxybenzo[a]pyrene. In contrast, the metabolism of benzo[a]pyrene by microsomes from rats induced with 3-methylcholanthrene or 3,3',4,4'-tetrachlorobiphenyl resulted in a greater than 10-fold increase in overall benzo[a]pyrene metabolism, with the largest increases observed in the formation of the trans-7,8- and -9,10-dihydrodiol metabolites of benzo[a]pyrene. However, in comparison to control and phenobarbitone-induced microsomes, the oxidative conversion of benzo[a]pyrene by microsomes induced with 3-methylcholanthrene and 3,3',4,4'-tetrachlorobiphenyl into the 6,12-quinone was substantially inhibited. Previous reports have shown that the commercial halogenated biphenyl mixtures, fireMaster BP-6, and Aroclor 1254 are mixed-type inducers and that microsomes from rats pretreated with these mixtures markedly enhance the overall metabolism of benzo[a]pyrene. Not surprisingly, the metabolism of benzo[a]pyrene by microsomes from rats pretreated with the mixed-type inducers, 2,3,3',4,4'-penta-,2,3,3',4,4',5-hexa-, and 2',3,3',4,4',5-hexa- chlorobiphenyl was also increased and the metabolic profile was similar to that observed with fireMaster BP-6 and Aroclor 1254 induced microsomes.  相似文献   

20.
Cytochrome P-450-dependent monooxygenases are able to oxidize a large variety of endogenous and exogenous substrates. This paper describes the in vitro interaction between benzopyrene and steroids at the level of two rat liver monooxygenases: steroid-16 alpha-hydroxylase and aryl hydrocarbon hydroxylase (AHH). The results obtained suggest the following conclusions: (1) Steroid-16 alpha-hydroxylase is partially supported by a specific cytochrome P-450 form which is not inhibited in vitro by exogenous substrates. Steroid-16 alpha-hydroxylase is completely independent from cytochrome P1-450 (or P-448), as it is insensitive, in vitro, to alpha-naphthoflavone; (2) AHH is supported by two cytochrome P-450 forms: a specific form which is inducible by methylcholanthrene and inhibited in vitro by alpha-naphthoflavone, but is insensitive to metyrapone and steroids; and another less specific form which is inhibited by metyrapone and steroids in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号