首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of orexin-monoaminergic compound interactions on oxytocin release were studied in 14-day rat neurohypophyseal cell cultures prepared by an enzymatic dissociation technique. The oxytocin contents of the supernatants were determined by radioimmunoassay. Following the administration of orexin-A or orexin-B in increasing doses, significant changes were not observed in the oxytocin content of the supernatant media. The oxytocin level increased substantially in response to adrenaline, noradrenaline, serotonin, histamine, dopamine or K(+) treatment. Preincubation with orexin-A or orexin-B reduced the adrenaline-, histamine- or serotonin-induced oxytocin level increases, but the oxytocin concentrations of the supernatant media remained above the control level. There was no significant difference in decreasing effect between orexin-A and orexin-B. Neither orexin-A nor orexin-B induced changes in oxytocin release following monoaminergic compound treatment. The results indicate that the changes in oxytocin secretion induced by the monoaminergic system can be directly influenced by the orexin system. The effects of orexin on oxytocin release can be antagonized by an orexin-1 receptor-specific antagonist. It may be presumed that the orexins can play a role in the pathogenetic process of metabolic diseases (e.g. obesity) by reducing the effects of increased oxytocin release caused by monoaminergic compounds. The interactions between the monoaminergic and orexin systems regarding oxytocin secretion occur at both the hypothalamic and the neurohypophyseal levels.  相似文献   

2.
Orexins are newly discovered neuropeptides regulating feeding and vigilance and have been detected in neuroendocrine cells of the gut. Potential neuroendocrine functions of orexin are unknown. Therefore, the effects of orexin-A on the intestinal neuroendocrine cell line, STC-1, were investigated as a model system. RT-PCR demonstrated the presence of both OX(1) and OX(2) receptors. Stimulation with orexin-A produced a dose-dependent release of cholecystokinin (CCK), which was abolished by removal of extracellular Ca(2+) or the presence of the voltage-gated L-type Ca(2+)-channel blocker diltiazem (10 microM). Orexin-A (Ox-A) elevated intracellular Ca(2+), which was dependent on extracellular Ca(2+). Furthermore, orexin-A caused a membrane depolarization in the STC-1 cells. Ox-A neither elevated cAMP levels nor stimulated phosphoinositide turnover in these cells. These data demonstrate a functional orexin receptor in the STC-1 cell line. Ox-A produces CCK release in these cells, by a mechanism involving membrane depolarization and subsequently activation of L-type voltage-gated Ca(2+)-channels.  相似文献   

3.
目的:探讨蓝斑区(LC)去甲肾上腺素能神经元在orexin促麻醉觉醒中作用。方法:应用异氟烷对成年SD大鼠进行麻醉,15分钟后,将SD大鼠随机分为6组,分别注射orexin-A/B(100pmol/0.3μL)及其溶剂saline(0.3μL);orexin I型受体拮抗剂SB334867/II型受体拮抗剂TCS-OX2-29(20μg/0.3μL及其溶剂DMSO(0.3μL),通过观察大鼠翻正反射的消失和恢复时间,研究蓝斑区微注射orexin及其拮抗剂对异氟烷麻醉的诱导和觉醒的影响。结果:蓝斑区(LC)微注射四种试剂或其溶剂均对SD大鼠异氟烷麻醉的诱导时间无明显影响;蓝斑区(LC)微注射orexin-A能缩短SD大鼠异氟烷麻醉觉醒时间(P〈0.001),而微注射orexinI型拮抗剂SB334867能延长觉醒时间(P〈0.001);orexin-B、orexin II型受体拮抗剂TCS-OX2-29对大鼠异氟烷麻醉的觉醒无明显影响。结论:蓝斑区(LC)的去甲肾上腺素能神经元介导了orexin的促麻醉觉醒作用。  相似文献   

4.
Effects of orexin on cultured porcine adrenal medullary and cortex cells   总被引:2,自引:0,他引:2  
New orexigenic peptides called orexins have recently been described in the neurons of the lateral hypothalamus and perifornical area. No orexins have been found in the adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin receptor (OXR) in the rat adrenal gland has been reported. With regard to the effects of orexins on peripheral organs, we previously reported that orexins suppress catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. To further clarify the pharmacological effects of orexins on peripheral organs, we examined the effects of orexin-A on catecholamine, cortisol, and aldosterone secretion, using cultured porcine adrenal glands. We initially confirmed the expression of the orexin receptor (OXR-1) in cultured porcine adrenal medulla and cortex. Orexin-A (1000 nM) significantly increased the release of both epinephrine (E) and norepinephrine (NE) from porcine adrenal medullary cells. Similarly, orexin-A (> or = 100 nM) significantly increased the release of both cortisol and aldosterone from porcine adrenal cortex cells. Orexin-A (100 nM) significantly inhibited basal and the PACAP-induced increase in cAMP levels in adrenal medullary cells. Conversely, orexin-A (>o = 100 nM) significantly increased the cAMP level in adrenal cortex cells. These results indicate that orexin-A induces the release of catecholamine from porcine adrenal medullary cells, and aldosterone and cortisol from the cortex cells and has opposite effects on cAMP levels in adrenal medulla and cortex.  相似文献   

5.
Dohi K  Ripley B  Fujiki N  Ohtaki H  Shioda S  Aruga T  Nishino S 《Peptides》2005,26(11):2339-2343
The aim of this study was to examine the role of the hypothalamic hypocretin/orexin system in complications of delayed ischemic neuronal deficit (DIND) resulting from symptomatic vasospasm in patients with aneurysmal subarachnoid hemorrhage (SAH). CSF hypocretin-1/orexin-A levels were measured in 15 SAH patients. DIND complications occurred in seven patients with symptomatic vasospasm. Hypocretin-1/orexin-A levels were low in SAH patients during the 10 days following the SAH event. CSF hypocretin-1/orexin-A levels were lower in patients with DIND complications than in those who did not develop DIND. A significant transient decline in CSF hypocretin-1/orexin-A levels was also observed at the onset of DIND in all patients with symptomatic vasospasm. The reduced hypocretin/orexin production observed in SAH patients may reflect reduced brain function due to the decrease in cerebral blood flow. These results, taken together with recent experimental findings in rats that indicate hypocretin receptor 1 (orexin 1 receptor) mRNA and protein are elevated following middle cerebral artery occlusion, suggest that a reduction in hypocretin/orexin production in SAH and DIND patients is associated with alterations in brain hypocretin/orexin signaling in response to ischemia.  相似文献   

6.
Although exogenous orexin can induce feeding, reports of increased orexin gene expression after caloric manipulations have been inconsistent. We hypothesized that orexin gene expression is increased only by extreme negative energy balance challenges. We measured hypothalamic orexin and NPY mRNA by in situ hybridization and orexin-A immunoreactivity in rats after food deprivation, streptozotocin-induced diabetes, and combined deprivation and diabetes. Neither food deprivation, nor diabetes, nor the combination affected orexin mRNA levels, although orexin-A immunoreactivity was increased by diabetes. NPY mRNA levels were increased by either treatment. These results suggest that increased orexin gene expression is not a consistent correlate of negative energy balance challenges.  相似文献   

7.
Neurons expressing prepro-orexin, the precursor of orexin-A and -B, are found in the lateral hypothalamic area, a region classically implicated in driving feeding. Orexin-A induces feeding transiently when injected centrally, and food intake can be decreased when orexin action is disrupted by immunoneutralization of orexin-A, or by pharmacological blockade of orexin receptors, or by transgenic knockout of orexin. Here, we argue that orexin neurons may act to stimulate feeding in the short term, and that important regulatory signals may be a fall in plasma glucose (stimulatory), countered by satiety signals generated by eating, such as gastric distention (inhibitory).  相似文献   

8.
9.
Hypothalamic orexin (hypocretin) neurons project to the key structures of the limbic system and orexin receptors, both orexin receptor type 1 (OXR1) and type 2 (OXR2), are expressed in most limbic regions. Emerging evidence suggests that orexin is among important neurotransmitters that regulate addictive properties of drugs of abuse. In this study, we examined the effect of psychostimulant cocaine on orexin receptor protein abundance in the rat limbic system in vivo. Intermittent administration of cocaine (20 mg/kg, i.p., once daily for 5 days) caused a typical behavioral sensitization response to a challenge cocaine injection at a 14-day withdrawal period. Repeated cocaine administration at the same withdrawal time also increased OXR2 protein levels in the nucleus accumbens while repeated cocaine had no effect on OXR1 and orexin neuropeptide (both orexin-A and orexin-B) levels in this region. In contrast to the nucleus accumbens, OXR2 levels in the frontal cortex, the ventral tegmental area, the hippocampus, and the dorsal striatum (caudate putamen) were not altered by cocaine. Remarkably, the up-regulated OXR2 levels in the nucleus accumbens showed a long-lasting nature as it persisted up to 60 days after the discontinuation of repeated cocaine treatments. In contrast to chronic cocaine administration, an acute cocaine injection was insufficient to modify levels of any orexin receptor and peptide. Our data identify the up-regulation of OXR2 in the nucleus accumbens as an enduring molecular event that is correlated well with behavioral plasticity in response to chronic psychostimulant administration. This OXR2 up-regulation may reflect a key adaptation of limbic orexinergic transmission to chronic drug exposure and may thus be critical for the expression of motor plasticity.  相似文献   

10.
We investigated the interactions of the peripheral satiety peptide cholecystokinin and the brain orexin-A system in the control of food intake. The effect of an intraperitoneal (i.p.) injection of sulfated cholecystokinin octapeptide (in this article called CCK) (5 microg/kg, 4.4 nmol/kg) or of phosphate-buffered saline (PBS, vehicle control) on 48 h fasting-induced feeding and on orexin-A peptide content was analyzed in diverse brain regions innervated by orexin neurons and involved in the control of food intake. Administration of CCK after a 48 h fast reduced fasting-induced hyperphagia (P<0.05). I.p. CCK increased the orexin-A content in the posterior brainstem of 48 h fasted rats by 35% (P<0.05). Fed animals receiving CCK had 48% higher orexin-A levels in the posterior brainstem than fasted rats (P<0.05). In the lateral hypothalamus, fasting decreased orexin-A levels by 50% as compared to fed rats (P<0.05). In the septal nuclei, the combination of fasting and CCK administration reduced orexin-A contents compared to fed PBS and CCK animals by 13% and 17%, respectively (P<0.05). These results suggest a convergence of pathways activated by peripheral CCK and by fasting on the level of orexin-A released in the posterior brainstem and provide evidence for a novel interaction between peripheral satiety signaling and a brain orexigen in the control of food intake.  相似文献   

11.
Zhang J  Li B  Yu L  He YC  Li HZ  Zhu JN  Wang JJ 《Neuron》2011,69(4):793-804
The absence of orexin results in narcolepsy-cataplexy. While the function of the central orexinergic system in sleep regulation has been well studied, the role of orexin in motor control is largely unknown. Here, we show that orexin-A acts via OX(1) and OX(2) receptors to directly depolarize neurons in the rat lateral vestibular nucleus (LVN), a subcortical motor center, and enhance their sensitivity. A dual ionic mechanism involving both Na+-Ca2+ exchangers and inward rectifier K+ channels underlies these effects. Furthermore, orexin-A regulates central vestibular-mediated posture, motor balance and negative geotaxis. Orexin is critical when an animal is facing a major motor challenge as opposed to during rest and general movements. Therefore, orexin participates not only in sleep and emotion (nonsomatic) but also in motor (somatic) regulation, suggesting that the central orexinergic system plays an important role in somatic-nonsomatic integration. These findings may account for why the absence of orexin results in narcolepsy-cataplexy.  相似文献   

12.
Orexins/hypocretins are neuropeptides that have various physiological effects, including the regulation of both the feeding behavior neuroendocrine functions and sleep-wakefulness cycle. Recent studies have suggested that the orexin system may also be involved in neuronal damage in the clinical setting and animal experiments. The aim of this study was to examine the role of the hypothalamic orexin-A/hypocretin-1 system in patients with intracerebral hemorrhage (ICH). The CSF orexin-A/hypocretin-1 levels were measured in 11 ICH patients. CSF orexin-A/hypocretin-1 levels were low in ICH patients during the 13 days following the ICH event. The mean CSF orexin-A/hypocretin-1 levels were 61.1+/-22.3 (S.D.) pg/ml (range 27.5-106.9 pg/ml).The decreasing in the CSF orexin-A/hypocretin-1 levels was not related to the severity of ICH. The CSF orexin-A/hypocretin-1 levels were lower in the thalamic hemorrhage patients than those in other patients (48.5+/-23.3 pg/ml vs. 65.2+/-21.2 pg/ml; p=0.03.) These data indicate that orexin-A/hypocretin-1 may therefore play an important role in the various physiological responses including sleep, feeding, and the overall metabolism in ICH patients.  相似文献   

13.
Recent work indicates that the orexin/hypocretin-containing neurons of the lateral hypothalamus are involved in control of REM sleep phenomena, but site-specific actions in control of wakefulness have been less studied. Orexin-containing neurons project to both brainstem and forebrain regions that are known to regulate sleep and wakefulness, including the field of cholinergic neurons in the basal forebrain (BF) that is implicated in regulation of wakefulness, and includes, in the rat, the horizontal limb of the diagonal band, the substantia innominata, and the magnocellular preoptic region. The present study used microdialysis perfusion of orexin-A directly in the cholinergic BF region of rat to test the hypothesis that orexin-A enhances W via a local action in the BF. A significant dose-dependent increase in W was produced by the perfusion of three doses of orexin-A in the BF (0.1, 1.0, and 10.0 microM), with 10.0 microM producing more than a 5-fold increase in wakefulness, which occupied 44% of the light (inactive) phase recording period. Orexin-A perfusion also produced a significant dose-dependent decrease in nonREM sleep, and a trend-level decrease in REM sleep. The results clearly demonstrate a potent capacity of orexin-A to induce wakefulness via a local action in the BF, and are consistent with previous work indicating that the BF cholinergic zone neurons have a critical role in the regulation of EEG activation and W. The data suggest further that orexin-A has a significant role in the regulation of arousal/wakefulness, in addition to the previously described role of orexin in the regulation and expression of REM sleep and REM sleep-related phenomena.  相似文献   

14.
Aging is associated with a progressive decrease in appetite and food intake. Both A and B orexins, expressed in specific neurons of the lateral hypothalamic area, have been implicated in the regulation of sleep and feeding. In this study, the stimulatory effect of intracerebroventricular administration of the orexins on food intake was compared between young (4-mo-old) and old (25- to 27-mo-old) male Wistar rats. A stainless steel cannula was implanted stereotactically into the left lateral ventricle. After a 7-day recovery period, different doses (0-30 nmol) of orexins were injected into the left lateral ventricle without anesthesia. Food and water consumptions were measured at 1, 2, and 4 h after injection. The protein levels of orexin receptors, a specific receptor for orexin-A (OX1R) and a receptor for both orexin-A and -B (OX2R), in the hypothalamus were determined by Western blot analysis and compared between young and old rats. Intracerebroventricular administration of orexin-A stimulated food intake in a dose-dependent manner in young rats. However, no effects were observed at any dose in old rats. The protein level of OX1R in the hypothalamus was significantly lower in old rats than in young rats, although the protein level of OX2R was comparable between groups. Results of the present study indicate that the function of the orexin system is diminished in old rats. The decrease in the OX1R protein level in the hypothalamus could be responsible for orexin-A's lack of stimulation of food intake in old rats.  相似文献   

15.
Intracerebroventricular (ICV) administration of ghrelin, orexin and neuropeptide Y (NPY) stimulates food intake in goldfish. Orexin and NPY interact with each other in the regulation of feeding, while ghrelin-induced feeding has also shown to be mediated by NPY in the goldfish model. To investigate the interaction between ghrelin and orexin, we examined the effects of a selective orexin receptor-1 antagonist, SB334867, and a growth hormone secretagogue-receptor antagonist, [D-Lys(3)]-GHRP-6, on ghrelin- and orexin-A-induced feeding. Ghrelin-induced food intake was completely inhibited for 1h following ICV preinjection of SB334867, while [D-Lys(3)]-GHRP-6 attenuated orexin-A stimulated feeding. Furthermore, ICV administration of ghrelin or orexin-A at a dose sufficient to stimulate food intake increased the expression of each other's mRNA in the diencephalon. These results indicate that, in goldfish, ghrelin and orexin-A have interacting orexigenic effects in the central nervous system. This is the first report that orexin-A-induced feeding is mediated by the ghrelin signaling in any animal model.  相似文献   

16.
17.
目的:研究orexin在隔核对大鼠胃传入信息的调控作用。方法:选取健康成年雄性Wistar大鼠138只(体质量250-300 g),记录神经元放电活动,鉴定隔核胃牵张(GD)敏感性神经元;隔核微量注射orexin-A或orexin-A受体拮抗剂SB334867,观察隔核GD敏感性神经元放电活动变化;隔核微量注射不同浓度的orexin-A,观察大鼠胃运动的变化。结果:隔核微量注射orexin-A的大鼠胃运动幅度和频率显著增加,并呈剂量依赖关系(P0.05-0.01),微量注射SB-334867可完全阻断orexin-A对胃运动的影响。隔核微量注射orexin-A后,有36个GD-E神经元兴奋(P0.01),16个GD-I神经元抑制。Orexin-A受体拮抗剂SB334867可完全阻断orexin-A对GD敏感神经元的作用。结论:隔核注射orexin能促进大鼠胃运动,并影响胃牵张敏感神经元的放电活动。  相似文献   

18.
Hypothalamic orexin neurons project to the hindbrain, and 4th-ventricle intracerebroventricular (4th-icv) injection of orexin-A treatment increases food intake. We assessed the effects of hindbrain orexin-A and the orexin-1-receptor antagonist SB334867 on meal pattern in rats consuming standard chow. When injected 4th-icv shortly before dark onset, lower doses of orexin-A increased food intake over a 2-h period by increasing the size of the first meal relative to vehicle, whereas the highest dose increased food intake by causing the second meal to be taken sooner. Conversely, hindbrain SB334867 reduced food intake by decreasing the size of the first meal of the dark phase. We also examined the effects of 4th-icv orexin-A and SB334867 on locomotor activity. Only the highest dose of orexin-A increased activity, and SB334867 had no effect. In addition, hindbrain SB334867 induced c-Fos in the nucleus of the solitary tract. These data support the suggestion that endogenous hindbrain orexin-A acts to limit satiation. Both orexin-A and the pancreatic satiation hormone amylin require an intact area postrema to affect food intake, so we asked whether 4th-icv orexin-A impairs the satiating effect of peripheral amylin treatment. Amylin reduced the size of the first meal of the dark cycle when rats were pretreated with 4th-icv saline, yet amylin was ineffective after 4th-icv orexin-A pretreatment. Using double-label immunohistochemistry, we determined that some orexin-A fibers in the area postrema are located in proximity to amylin-responsive neurons. Therefore, hindbrain orexin-A may increase food intake, in part, by reducing the ability of rats to respond to amylin during a meal.  相似文献   

19.
It has been shown that intracerebroventricular injection of synthetic orexins stimulated food intake in rats. This pharmacological evidence suggests that orexins may have a role for the central regulation of feeding. In the present study, we investigated the hypothesis of whether endogenous orexins indeed play a vital role in feeding behavior. An anti-orexin polyclonal antibody was used throughout the study. First, we examined the specificity of the antibody to orexin by Western blot analysis and immunohistochemistry. Next, the effects of central injection of the orexin antibody on food intake in 24-h-fasted rats were evaluated. Western blot analysis revealed that the orexin antibody detected synthetic orexin-A. Immunohistochemical study showed that orexin-positive neurons were identified only in the lateral hypothalamic area, in agreement with previous reports. Neither control antibody nor the orexin antibody preabsorbed with excess amount of orexin-A detected neurons, indicating that the orexin antibody is specific. Intracisternal but not intraperitoneal injection of the orexin antibody dose-dependently suppressed feeding. All these results suggest that immunoneutralization of endogenous orexins in the brain reduced food intake. In other words, we suggest that endogenous brain orexin may have a physiologically relevant action on feeding behavior.  相似文献   

20.
New orexigenic peptides called orexin-A and -B have recently been described in neurons of the lateral hypothalamus and perifornical area. No orexins have been found in adipose tissues or visceral organs, including the adrenal gland. However, expression of the orexin-receptor 2 (OX2R) in the rat adrenal gland has been reported. To test the effects of orexins on peripheral organs, we investigated their effects on catecholamine synthesis and secretion in the rat pheochromocytoma cell line PC12. Orexin-A and -B (100 nM) significantly reduced basal and PACAP-induced tyrosine hydroxylase (TH) (the rate-limiting enzyme in the biosynthesis of catecholamines) mRNA levels. Orexin-A and -B (100 nM) also significantly inhibited the PACAP-induced increase in the cAMP level, suggesting that the suppressive effect on TH mRNA is mediated, at least in part, by the cAMP/protein kinase A pathway. Furthermore, orexin-A and -B (100 nM) significantly suppressed basal and PACAP-induced dopamine secretion from PC12 cells. Next, we examined whether orexin receptors (OX1R, OX2R) were present in the rat adrenal gland and PC12 cells. In the adrenal glands, OX2R was as strongly expressed as in the hypothalamus, but OX1R was not detected. On the other hand, neither OX1R nor OX2R was expressed in PC12 cells. However, binding assays showed equal binding of orexin-A and -B to PC12 cells, suggesting the existence in these cells of some receptors for orexins. These results indicate that orexins suppress catecholamine release and synthesis, and that the inhibitory effect is mediated by the cAMP/protein kinase A pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号