首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

2.
Hybrid cells generated by fusing dendritic cells with tumor cells (DC-TC) are currently being evaluated as cancer vaccines in preclinical models and human immunization trials. In this study, we evaluated the production of human DC-TC hybrids using an electrofusion protocol previously defined for murine cells. Human DCs were electrically fused with allogeneic melanoma cells (888mel) and were subsequently analyzed for coexpression of unique DC and TC markers using FACS and fluorescence microscopy. Dually fluorescent cells were clearly observed using both techniques after staining with Abs against distinct surface molecules suggesting that true cell fusion had occurred. We also evaluated the ability of human DC-TC hybrids to present tumor-associated epitopes in the context of both MHC class I and class II molecules. Allogeneic DCs expressing HLA-A*0201, HLA-DR beta 1*0401, and HLA-DR beta 1*0701 were fused with 888mel cells that do not express any of these MHC molecules, but do express multiple melanoma-associated Ags. DC-888mel hybrids efficiently presented HLA-A*0201-restricted epitopes from the melanoma Ags MART-1, gp100, tyrosinase, and tyrosinase-related protein 2 as evaluated by specific cytokine secretion from six distinct CTL lines. In contrast, DCs could not cross-present MHC class I-restricted epitopes after exogenously loading with gp100 protein. DC-888mel hybrids also presented HLA-DR beta 1*0401- and HLA-DR beta 1*0701-restricted peptides from gp100 to CD4(+) T cell populations. Therefore, fusions of DCs and tumor cells express both MHC class I- and class II-restricted tumor-associated epitopes and may be useful for the induction of tumor-reactive CD8(+) and CD4(+) T cells in vitro and in human vaccination trials.  相似文献   

3.
The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research of their potential use in immunotherapy. Accumulating results show the efficacy of this treatment on melanomas which are highly immunogenic. However, its efficacy remains unclear in other tumors. In this study, allogeneic gastric cancer cell–DC hybrids were used to determine the efficacy of this type of immunotherapy in gastric cancer. Fusion cells of DC and allogeneic gastric cancer cells were generated by polyethylene glycol (PEG) and electrofusion. These hybrids were used to induce tumor associated antigen (TAA) specific cytotoxic T lymphocytes (CTLs). The DCs were successfully fused with the allogeneic gastric cancer cells resulting in hybrid cells. These hybrid cells were functional as antigen-presenting cell because they induced allogeneic CD4+ T cells proliferation. CD8+ T cells stimulated by the MKN-45-DC hybrid cells were able to kill MKN-45 when used for immunization. The CTLs killed another gastric cancer cell line, MKN-1, as well as a melanoma cell line, 888mel, suggesting the recognition of a shared tumor antigen. MKN-45 specific CTLs can recognize carcinoembryonic antigen (CEA), indicating that the killing is due to tumor antigens as well as alloantigens. This approach suggests the possible use of allogeneic gastric cancer cell–DC hybrids in DC based immunotherapy for gastric cancer treatment.  相似文献   

4.
Vaccination of patients with dendritic cell (DC)/breast carcinoma fusions stimulated antitumor immune responses in a majority of patients with metastatic disease but only a subset demonstrate evidence of tumor regression. To define the factors that limit vaccine efficacy, we examined the biological characteristics of DC/breast carcinoma fusions as APCs and the nature of the vaccine-mediated T cell response. We demonstrate that fusion of DCs with breast carcinoma cells up-regulates expression of costimulatory and maturation markers and results in high levels of expression of IL-12 consistent with their role as activated APCs. Fusion cells also express the chemokine receptor CCR7, consistent with their ability to migrate to the draining lymph node. However, DC/breast cancer fusions stimulate a mixed T cell response characterized by the expansion of both activated and regulatory T cell populations, the latter of which is characterized by expression of CTLA-4, FOXP3, IL-10, and the suppression of T cell responses. Our results demonstrate that IL-12, IL-18, and TLR 9 agonist CpG oligodeoxynucleotides reduce the level of fusion-mediated regulatory T cell expansion. Our results also demonstrate that sequential stimulation with DC/breast carcinoma fusions and anti-CD3/CD28 results in the marked expansion of activated tumor-specific T cells. These findings suggest that DC/breast carcinoma fusions are effective APCs, but stimulate inhibitory T cells that limit vaccine efficacy. In contrast, exposure to TLR agonists, stimulatory cytokines, and anti-CD3/CD28 enhances vaccine efficacy by limiting the regulatory T cell response and promoting expansion of activated effector cells.  相似文献   

5.
Pancreatic cancer (PC) is a deadly human malignancy. Dendritic cell (DC)-based immunotherapy with whole tumor antigens demonstrates potential efficiency in cancer treatment. Tumor RNA and tumor fusion hybrid cells are sources of whole tumor antigens for preparing DC tumor vaccines. However, the efficacy of these sources in eliciting immune responses against PC has not yet to be directly compared. In the present study, patient-derived PC cells and DCs were fused (DC–tumor hybrids) and primary cultured PC cell-derived total RNA was electroporated into autologous DCs (DC–tumor RNA). The antitumor immune responses induced by DC–tumor hybrids and DC–tumor RNA were compared directly. The results showed that both RNA and hybrid methodologies could induce tumor-specific cytotoxic T lymphocyte (CTL) responses, but pulsing DCs with total tumor RNA could induce a higher frequency of activated CTLs and T-helper cells than fusing DCs with autologous tumor cells. In addition, DC–tumor RNA triggered stronger autologous tumor cell lysis than DC–tumor hybrids. It could be concluded that DCs pulsed with whole tumor RNA are superior to those fused with tumor cells in priming anti-PC CTL responses. Electroporation with total tumor RNA may be more suitable for DC-based PC vaccination.  相似文献   

6.
To investigate the ability of human dendritic cells (DC) to process and present multiple epitopes from the gp100 melanoma tumor-associated Ags (TAA), DC from melanoma patients expressing HLA-A2 and HLA-A3 were pulsed with gp100-derived peptides G9154, G9209, or G9280 or were infected with a vaccinia vector (Vac-Pmel/gp100) containing the gene for gp100 and used to elicit CTL from autologous PBL. CTL were also generated after stimulation of PBL with autologous tumor. CTL induced with autologous tumor stimulation demonstrated HLA-A2-restricted, gp100-specific lysis of autologous and allogeneic tumors and no lysis of HLA-A3-expressing, gp100+ target cells. CTL generated by G9154, G9209, or G9280 peptide-pulsed, DC-lysed, HLA-A2-matched EBV transformed B cells pulsed with the corresponding peptide. CTL generated by Vac-Pmel/gp100-infected DC (DC/Pmel) lysed HLA-A2- or HLA-A3-matched B cell lines pulsed with the HLA-A2-restricted G9154, G9209, or G9280 or with the HLA-A3-restricted G917 peptide derived from gp100. Furthermore, these DC/Pmel-induced CTL demonstrated potent cytotoxicity against allogeneic HLA-A2- or HLA-A3-matched gp100+ melanoma cells and autologous tumor. We conclude that DC-expressing TAA present multiple gp100 epitopes in the context of multiple HLA class I-restricting alleles and elicit CTL that recognize multiple gp100-derived peptides in the context of multiple HLA class I alleles. The data suggest that for tumor immunotherapy, genetically modified DC that express an entire TAA may present the full array of possible CTL epitopes in the context of all possible HLA alleles and may be superior to DC pulsed with limited numbers of defined peptides.  相似文献   

7.
8.
Human papillomavirus (HPV) type 16 (HPV 16) and HPV type 18 (HPV 18) are implicated in the induction and progression of the majority of cervical cancers. Since the E6 and E7 oncoproteins of these viruses are expressed in these lesions, such proteins might be potential tumor-specific targets for immunotherapy. In this report, we demonstrate that recombinant, full-length E7-pulsed autologous dendritic cells (DC) can elicit a specific CD8(+) cytotoxic T-lymphocyte (CTL) response against autologous tumor target cells in three patients with HPV 16- or HPV 18-positive cervical cancer. E7-specific CTL populations expressed strong cytolytic activity against autologous tumor cells, did not lyse autologous concanavalin A-treated lymphoblasts or autologous Epstein-Barr virus-transformed lymphoblastoid cell lines (LCL), and showed low levels of cytotoxicity against natural killer cell-sensitive K562 cells. Cytotoxicity against autologous tumor cells could be significantly blocked by anti-HLA class I (W6/32) and anti-CD11a/LFA-1 antibodies. Phenotypically, all CTL populations were CD3(+)/CD8(+), with variable levels of CD56 expression. CTL induced by E7-pulsed DC were also highly cytotoxic against an allogeneic HLA-A2(+) HPV 16-positive matched cell line (CaSki). In addition, we show that specific lymphoproliferative responses by autologous CD4(+) T cells can also be induced by E7-pulsed autologus DC. E7-specific CD4(+) T cells proliferated in response to E7-pulsed LCL but not unpulsed LCL, and this response could be blocked by anti-HLA class II antibody. Finally, with two-color flow cytometric analysis of intracellular cytokine expression at the single-cell level, a marked Th1-like bias (as determined by the frequency of gamma interferon- and interleukin 4-expressing cells) was observable for both CD8(+) and CD4(+) E7-specific lymphocyte populations. Taken together, these data demonstrate that full-length E7-pulsed DC can induce both E7-specific CD4(+) T-cell proliferative responses and strong CD8(+) CTL responses capable of lysing autologous naturally HPV-infected cancer cells in patients with cervical cancer. These results may have important implications for the treatment of cervical cancer patients with active or adoptive immunotherapy.  相似文献   

9.
Bispecific antibodies (bsAb) have attracted much attention over the past several years as a mean to improve immunotherapy of cancer. Due to their dual specificity, bsAb are able to redirect effector cells against tumor targets. In this study, the development and preclinical testing of a new quadroma-derived bsAb, HEA125x197, recognizing the tumor-associated Ep-CAM antigen and the high affinity Fc receptor for IgG, CD64, is reported. Using granulocyte-colony stimulating factor (G-CSF) and interferon-gamma (IFN-gamma)-stimulated polymorphonuclear neutrophils to induce CD64 expression, bsAb HEA125 x 197 elicited strong cytotoxic activity towards allogeneic and autologous ovarian carcinoma cells. The cytolytic efficiency of this antibody was comparable to that of a previously described bsAb, HEA125 x OKT3, targeting preactivated T lymphocytes against Ep-CAM-carrying tumor cells. Based on the pan-carcinoma specificity and the stable expression of Ep-CAM, bsAb HEA125x197 may broaden the spectrum of bispecific reagents for the treatment of epithelial malignancies.  相似文献   

10.
Dendritic cells (DCs) mediate cross-priming of tumor-specific T cells by acquiring tumor Ags from dead cancer cells. The process of cross-priming would be most economical and efficient if DCs also induce death of cancer cells. In this study, we demonstrate that normal human in vitro generated immature DCs consistently and efficiently induce apoptosis in cancer cell lines, freshly isolated noncultured cancer cells, and normal proliferating endothelial cells, but not in most normal cells. In addition, in vivo generated noncultured peripheral blood immature DCs mediate similar tumoricidal activity as their in vitro counterpart, indicating that this DC activity might be biologically relevant. In contrast to immature DCs, freshly isolated monocytes (myeloid DC precursors) and in vitro generated mature DCs are not cytotoxic or are less cytotoxic, respectively, suggesting that DC-mediated killing of cancer cells is developmentally regulated. Comparable cytotoxic activity is mediated by untreated DCs, paraformaldehyde-fixed DCs, and soluble products of DCs, and is destructible by proteases, indicating that both cell membrane-bound and secreted proteins mediate this DC function. Overall, our data demonstrate that human immature DCs are capable of inducing apoptosis in cancer cells and thus to both directly mediate anticancer activity and initiate processing of cellular tumor Ags.  相似文献   

11.
12.
It has been known for some time that functional properties of dendritic cells (DC), and in particular their ability to process and present Ags to T cells, can be modulated by cytokine-induced maturation and by interactions with tumor cells. However, the molecular basis for these functional changes is unknown. We have investigated whether changes in expression of Ag-processing machinery (APM) components in DC are associated with alterations in their ability to present tumor-derived Ags to T cells. Using a panel of mAbs specific for individual APM components and a quantitative flow cytometry-based method, the level of APM components was measured in DC generated from peripheral blood monocytes of 12 normal donors and of 8 patients with cancer. Immature DC had significantly lower (p < 0.01) expression of MB1, LMP-7, LMP-10, TAP-1, and tapasin than mature DC. However, maturation in the presence of a cytokine mixture up-regulated expression of these components in DC obtained from normal donors and patients with cancer. Immature DC incubated with tumor cells had significantly lower (p < 0.001) expression of MB1, LMP-2, LMP-7, LMP-10, and endoplasmic reticulum p75 than controls. These changes were associated with a decreased ability of DC to present tumor-derived Ags to T cells, as measured in ELISPOT assays and with apoptosis of T cells in DC-T cell cultures. Thus, tumor cells have a significant suppressive effect on DC; however, ex vivo maturation of DC derived from patients with cancer in a polarizing cytokine mix restores normal expression of APM components and Ag-processing capabilities.  相似文献   

13.
Known for years as professional APCs, dendritic cells (DCs) are also endowed with tumoricidal activity. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. However, the tumoricidal activity of DCs has mainly been investigated in animal models. Cancer cells inhibit antitumor immune responses using numerous mechanisms, including the induction of immunosuppressive/ tolerogenic DCs that have lost their ability to present Ags in an immunogenic manner. In this study, we evaluated the possibility of generating tumor killer DCs from patients with advanced-stage cancers. We demonstrate that human monocyte-derived DCs are endowed with significant cytotoxic activity against tumor cells following activation with LPS. The mechanism of DC-mediated tumor cell killing primarily involves peroxynitrites. This observed cytotoxic activity is restricted to immature DCs. Additionally, after killing, these cytotoxic DCs are able to activate tumor Ag-specific T cells. These observations may open important new perspectives for the use of autologous cytotoxic DCs in cancer immunotherapy strategies.  相似文献   

14.
Although immunological tolerance to self Ags represents an important mechanism to prevent normal tissue injury, there is growing evidence that tolerance to tumor Ags, which often represent normal peripherally expressed proteins, is not absolute and can be effectively reverted. Prostate-specific Ag (PSA) is a self Ag expressed by both normal and malignant prostatic epithelium, and therefore offers a unique opportunity to examine the ability of self Ags to serve as specific CTL targets. In this study, we investigated the efficacy of autologous dendritic cells (DC) transfected with mRNA encoding PSA to stimulate CTL against PSA Ags in vitro. Ag in form of RNA carries the advantage to encode multiple epitopes for many HLA alleles, thus permitting induction of CTL responses among many cancer patients independent of their HLA repertoire. In this study, we show that PSA mRNA-transfected DC were capable of stimulating primary CTL responses against PSA Ags in vitro. The PSA-specific CTL did not cross-react with kallikrein Ags, a protein, which shares significant homology with PSA, suggesting that harmful autoimmune toxicity may not represent a significant problem with this approach. PSA RNA-transfected DC generated from male or female healthy volunteers or from cancer patients were equally effective in stimulating PSA-specific CTL in vitro, implying that neither natural tolerance to PSA Ags nor tumor-mediated T cell anergy may represent major barriers for CTL generation against the self Ag PSA. This study provides a preclinical rationale for using PSA RNA-transfected DC in active or adoptive immunization protocols.  相似文献   

15.
Zhang HM  Zhang LW  Liu WC  Cheng J  Si XM  Ren J 《Cytotherapy》2006,8(6):580-588
BACKGROUND: DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS: Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS: DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION: Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.  相似文献   

16.
Fusions of patient-derived dendritic cells (DCs) and autologous tumor cells induce T-cell responses against autologous tumors in animal models and human clinical trials. These fusion cells require patient-derived tumor cells, which are not, however, always available. Here we fused autologous DCs from patients with hepatocellular carcinoma (HCC) to an allogeneic HCC cell line (HepG2). These fusion cells co-expressed tumor-associated antigens (TAAs) and DC-derived costimulatory and MHC molecules. Both CD4+ and CD8+ T cells were activated by the fusion cells. Cytotoxic T lymphocytes (CTLs) induced by the fusion cells were able to kill autologous HCC by HLA-A2- and/or HLA-A24-restricted mechanisms. CTL activity against shared TAAs indicates that the presence of alloantigens does not prevent the development of CTLs with activity against autologous HCC cells. These fusion cells may have applications in anti-tumor immunotherapy through cross-priming against shared tumor antigens and may provide a platform for adoptive immunotherapy.  相似文献   

17.
Dendritic cell (DC)-based vaccination represents a promising approach to harness the specificity and potency of the immune system to combat cancer. Finding optimal strategies for tumor Ag preparation and subsequent pulsing of DC, as well as improving the immunogenicity of weak tumor Ags remain among the first challenges of this approach. In this report, we use a prophylactic vaccine consisting of DC loaded with whole, nonmanipulated B16-F10 melanoma cells that had been stressed by heat shock and gamma irradiation. Stressed B16-F10 cells underwent apoptosis and were internalized by bone marrow-derived DC during coculture. Surprisingly, coculture of DC with stressed B16-F10 undergoing apoptosis and necrosis did not induce DC maturation. However, a marked retardation in tumor growth was observed in C57BL/6 mice immunized using DC loaded with stressed B16-F10 cells and subsequently challenged with B16-F10 cells. Growth retardation was further increased by treating DC with LPS before in vivo administration. In vivo depletion studies revealed that both CD8(+) and CD4(+) T cells played a critical role in retarding tumor growth. In addition, treatment with anti-CD25 Ab to deplete CD4(+)CD25(+) regulatory T cells before DC vaccination considerably improved the effect of the vaccine and allowed the development of long-lived immune responses that were tumor protective. Our results demonstrate that depletion of regulatory T cells is an effective approach to improving the success of DC-based vaccination against weakly immunogenic tumors. Such a strategy can be readily applied to other tumor models and extended to therapeutic vaccination settings.  相似文献   

18.
Malignant relapse remains a major problem for recipients of allogeneic hemopoietic stem cell transplantation (HSCT). We hypothesized that immunization of allogeneic HSCT recipients against tissue-restricted Ags using DNA vaccines would decrease the risk of relapse without enhancing graft-vs-host disease (GVHD). Using the mouse B16 melanoma model, we found that post-HSCT DNA immunization against a single tumor Ag induces tumor rejection that is significantly greater than HSCT alone in a T cell-depleted MHC-matched minor Ag-mismatched allogeneic HSCT model (LP --> B6). In treatment models, post-HSCT DNA immunization provides significantly greater overall survival than the vaccine alone. Donor leukocyte infusion further enhances tumor-free survival, including in treatment models. There was no GVHD in HSCT recipients treated with DNA vaccination and donor leukocyte infusion. Further analysis demonstrated that these effects are dependent on CD8+ T cells of donor origin that recognize multiple epitopes. These results demonstrate that DNA immunization against tissue-restricted Ags after allogeneic T cell-depleted HSCT can induce potent antitumor effects without causing GVHD.  相似文献   

19.
CTL clones were developed from tumor infiltrating lymphocytes (TIL) from the ascites of a patient with ovarian carcinoma by coculture of TIL with autologous tumor cells and subsequent cloning in the presence of autologous tumor cells. These CTL clones expressed preferential cytolytic activity against autologous tumor cells but not against allogeneic ovarian tumor cells and the NK-sensitive cell line K562. The cytolytic activity of these CTL against autologous tumors was inhibited by anti-TCR (WT31 mAb), anti-HLA class I, and anti-CD3 mAb but not by the NK function antibody Leu 11b. Cloning of the autologous tumor cells in vitro revealed that the CTL clones of the ovarian TIL expressed differential abilities to lyse autologous tumor cell clones. The specificity analysis of these autologous tumor specific CTL suggested that they recognize several antigenic determinants present on the ovarian tumor cells. Our results indicate the presence of at least three antigenic epitopes on the tumor cells (designated OVA-1A, OVA-1B, and OVA-1C), one of which (OVA-1C) is unstable. These determinants are present either simultaneously or separately, and six types of ovarian clones can be distinguished on the basis of their expression. These results indicate that CTL of the TIL detect intratumor antigenic heterogeneity. The novel heterogeneity identified within the ovarian tumor cells in this report may be of significance for understanding cellular immunity in ovarian cancer and developing adoptive specific immunotherapeutic approaches in ovarian cancer.  相似文献   

20.
Dendritic cell (DC)/tumor cell fusion cells (FCs) can induce potent CTL responses. The therapeutic efficacy of a vaccine requires the improved immunogenicity of both DCs and tumor cells. The DCs stimulated with the TLR agonist penicillin-killed Streptococcus pyogenes (OK-432; OK-DCs) showed higher expression levels of MHC class I and II, CD80, CD86, CD83, IL-12, and heat shock proteins (HSPs) than did immature DCs. Moreover, heat-treated autologous tumor cells displayed a characteristic phenotype with increased expression of HSPs, carcinoembryonic Ag (CEA), MUC1, and MHC class I (HLA-A2 and/or A24). In this study, we have created four types of FC preparation by alternating fusion cell partners: 1) immature DCs fused with unheated tumor cells; 2) immature DCs fused with heat-treated tumor cells; 3) OK-DCs fused with unheated tumor cells; and 4) OK-DCs fused with heat-treated tumor cells. Although OK-DCs fused with unheated tumor cells efficiently enhanced CTL induction, OK-DCs fused with heat-treated tumor cells were most active, as demonstrated by: 1) up-regulation of multiple HSPs, MHC class I and II, CEA, CD80, CD86, CD83, and IL-12; 2) activation of CD4+ and CD8+ T cells able to produce IFN- gamma at higher levels; 3) efficient induction of CTL activity specific for CEA or MUC1 or both against autologous tumor; and 4) superior abilities to induce CD107+ IFN-gamma+ CD8+ T cells and CD154+ IFN-gamma+ CD4+ T cells. These results strongly suggest that synergism between OK-DCs and heat-treated tumor cells enhances the immunogenicity of FCs and provides a promising means of inducing therapeutic antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号