首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

2.
To develop a less genotype-dependent maize-transformation procedure, we used 10-month-old Type I callus as target tissue for microprojectile bombardment. Twelve transgenic callus lines were obtained from two of the three anther-culture-derived callus cultures representing different gentic backgrounds. Multiple fertile transgenic plants (T0) were regenerated from each transgenic callus line. Transgenic leaves treated with the herbicide Basta showed no symptoms, indicating that one of the two introduced genes, bar, was functionally expressing. Data from DNA hybridization analysis confirmed that the introduced genes (bar and uidA) were integrated into the plant genome and that all lines derived from independent transformation events. Transmission of the introduced genes and the functional expression of bar in T1 progeny was also confirmed. Germination of T1 immature embryos in the presence of bialaphos was used as a screen for functional expression of bar; however, leaf painting of T1 plants proved a more accurate predictor of bar expression in plants. This study suggests that maize Type I callus can be transformed efficiently through microprojectile bombardment and that fertile transgenic plants can be recovered. This system should facilitate the direct introduction of agronomically important genes in to commercial genotypes.  相似文献   

3.
Transient expression of the maize anthocyanin regulatory elements,R andC1, was used to optimise parameters for microprojectile-mediated delivery of DNA into sugarcane embryogenic callus. Osmotic treatment of target tissues and particle acceleration in a high-pressure helium pulse increased the frequency of transient expression to 5–8×103 cells per bombardment, with minimal tissue damage. An average of 0.34% of transiently expressing cells developed into stably transformed, anthocyanin-pigmented proembryoids which subsequently regenerated into plantlets. However, constitutive expression ofR andC1 proved deleterious, and no anthocyanin-pigmented plant survived beyond 3 cm in height. We also compared selective subculture of callus portions showing luciferase activity with antibiotic selection on medium containing G418 or phosphinothricin, upon bombardment of callus with constructs driving strong expression ofluc, aphA orbar genes. Selective subculture based on luciferase activity enabled recovery of 1.4±0.5 independent transgenic plants per bombardment, compared to 19.8±3.7 independent transgenic plants per bombardment from an optimised G418 selection regimen, and no transformed plants from phosphinothricin selection. Whenluc andaphA on separate plasmids were coprecipitated onto microprojectiles before bombardment, 67–79% of callus lines selected for G418 resistance also showed luciferase activity detectable under a low-light camera. Southern analysis confirmed a very high cotransformation frequency, with variable copy numbers of introduced genes. The high efficiencies of gene transfer, selection and cotransformation in the optimised system, coupled with the simple initiation and regeneration of embryogenic callus, provide an effective tool for practical genetic transformation of sugarcane.  相似文献   

4.
Peanut, one of the world's most important oilseed crops, has a narrow germplasm base and lacks sources of resistance to several major diseases. The species is considered recalcitrant to transformation, with few confirmed transgenic plants upon particle bombardment or Agrobacterium treatment. Reported transformation methods are limited by low efficiency, cultivar specificity, chimeric or infertile transformants, or availability of explants. Here we present a method to efficiently transform cultivars in both botanical types of peanut, by (1) particle bombardment into embryogenic callus derived from mature seeds, (2) escape-free (not stepwise) selection for hygromycin B resistance, (3) brief osmotic desiccation followed by sequential incubation on charcoal and cytokinin-containing media; resulting in efficient conversion of transformed somatic embryos into fertile, non-chimeric, transgenic plants. The method produces three to six independent transformants per bombardment of 10 cm2 embryogenic callus. Potted, transgenic plant lines can be regenerated within 9 months of callus initiation, or 6 months after bombardment. Transgene copy number ranged from one to 20 with multiple integration sites. There was ca. 50% coexpression of hph and luc or uidA genes coprecipitated on separate plasmids. Reporter gene (luc) expression was confirmed in T1 progeny from each of six tested independent transformants. Insufficient seeds were produced under containment conditions to determine segregation ratios. The practicality of the technique for efficient cotransformation with selected and unselected genes is demonstrated using major commercial peanut varieties in Australia (cv. NC-7, a virginia market type) and Indonesia (cv. Gajah, a spanish market type).  相似文献   

5.
In vitro regeneration and biolistic transformation procedures were developed for several commercial chrysanthemum Dendranthema grandiflora Tzvelev, syn. Chrysanthemum morifolium Ramat. cultivars using leaf and stem explants. Studies on the effect of several growth regulators and kanamycin on chrysanthemum regeneration were conducted, and a step-wise procedure to optimize kanamycin selection and recovery of transgenic plants was developed. A population of putative transformed chrysanthemum plants cvs. Blush, Dark Bronze Charm, Iridon, and Tara, was obtained after bombardment with tungsten microprojectiles coated with the binary plasmid pBIN19 containing the nucleocapsid (N) gene of tomato spotted wilt virus (TSWV) and the marker gene neomycin phosphotransferase (NPT II). PCR analysis of 82 putative transgenic plants selected on kanamycin indicated that the majority of the lines (89%) were transformed and contained both genes (71%). However, some transgenic lines contained only one of the genes: either the NPT II (15%) or the TSWV (N) gene (14%). Southern blot analysis on selected transgenic lines confirmed the integration of the TSWV (N) gene into the chrysanthemum genome. These results demonstrate the development of an efficient procedure to transfer genetic material into the chrysanthemum genome and selectively regenerate transgenic chrysanthemum plants at frequencies higher than previously reported.  相似文献   

6.
7.
Mature seed‐derived callus from an elite Chinese japonica rice cv. Eyl 105 was transformed with a plasmid containing the selectable marker hygromycin phosphotransferase (hpt) and the reporter β‐glucuronidase (gusA) genes via particle bombardment. After two rounds of selection on hygromycin (30 mg/l)‐containing medium, resistant callus was transferred to hygromycin (30 mg/l)‐containing regeneration medium for plant regeneration. Twenty‐three independent transgenic rice plants were regenerated from 127 bombarded callus with a transformation frequency of 18.1%. All the transgenic plants contained both gusA and hpt genes, revealed by PCR/Southern blot analysis. GUS assay revealed 18 out of 23 plants (78.3%) proliferated on hygromycin‐containing medium had GUS expression at various levels. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parent plants showing 3:1 Mendelian segregation, we identified three independent homozygous transgenic rice lines. The homozygous lines were phenotypically normal and fertile compared to the control plants. We demonstrate that homozygous transgenic rice lines can be obtained via particle bombardment‐mediated transformation and through genetic analysis‐based selection.  相似文献   

8.
Sugarcane yellow leaf syndrome, characterized by a yellowing of the leaf midrib followed by leaf necrosis and growth suppression, is caused by sugarcane yellow leaf virus (SCYLV). We produced SCYLV-resistant transgenic sugarcane from a susceptible cultivar (H62-4671) and determined the amount of virus present following inoculation. The transgenic plants were produced through biolistic bombardment of cell cultures with an untranslatable coat protein gene. Presence of the transgene in regenerated plants was confirmed using PCR and Southern blot analysis. The transgenic lines were inoculated by viruliferous aphids and the level of SCYLV in the plants was determined. Six out of nine transgenic lines had at least 103-fold lower virus titer than the non-transformed, susceptible parent line. This resistance level, as measured by virus titer and symptom development, was similar to that of a resistant cultivar (H78-4153). The selected SCYLV-resistant transgenic sugarcane lines will be available for integration of the resistance gene into other commercial cultivars and for quantification of viral effects on yield.  相似文献   

9.
In the ongoing process of developing Brachypodium distachyon as a model plant for temperate cereals and forage grasses, we have developed a high-throughput Agrobacterium-mediated transformation system for a diploid accession. Embryogenic callus, derived from immature embryos of the accession BDR018, were transformed with Agrobacterium tumefaciens strain AGL1 carrying two T-DNA plasmids, pDM805 and pWBV-Ds-Ubi-bar-Ds. Transient and stable transformation efficiencies were optimised by varying the pre-cultivation period, which had a strong effect on stable transformation efficiency. On average 55% of 17-day-old calli co-inoculated with Agrobacterium regenerated stable transgenic plants. Stable transformation frequencies of up to 80%, which to our knowledge is the highest transformation efficiency reported in graminaceous species, were observed. In a study of 177 transgenic lines transformed with pDM805, all of the regenerated transgenic lines were resistant to BASTA((R)), while the gusA gene was expressed in 88% of the transgenic lines. Southern blot analysis revealed that 35% of the tested plants had a single T-DNA integration. Segregation analysis performed on progenies of ten selected T(0) plants indicated simple Mendelian inheritance of the two transgenes. Furthermore, the presence of two selection marker genes, bar and hpt, on the T-DNA of pWBV-Ds-Ubi-bar-Ds allowed us to characterize the developed transformation protocol with respect to full-length integration rate. Even when not selected for, full-length integration occurred in 97% of the transformants when using bialaphos as selection agent.  相似文献   

10.
Gao C  Long D  Lenk I  Nielsen KK 《Plant cell reports》2008,27(10):1601-1609
Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.  相似文献   

11.
A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.  相似文献   

12.
We have developed a method for the accelerated production of fertile transgenic wheat (Triticum aestivum L.) that yields rooted plants ready for transfer to soil in 8–9 weeks (56–66 days) after the initiation of cultures. This was made possible by improvements in the procedures used for culture, bombardment, and selection. Cultured immature embryos were given a 4–6 h pre-and 16 h post-bombardment osmotic treatment. The most consistent and satisfactory results were obtained with 30 g of gold particles/bombardment. No clear correlation was found between the frequencies of transient expression and stable transformation. The highest rates of regeneration and transformation were obtained when callus formation after bombardment was limited to two weeks in the dark, with or without selection, followed by selection during regeneration under light. Selection with bialaphos, and not phosphinothricin, yielded more vigorously growing transformed plantlets. The elongation of dark green plantlets in the presence of 4–5 mg/l bialaphos was found to be reliable for identifying transformed plants. Eighty independent transgenic wheat lines were produced in this study. Under optimum conditions, 32 transformed wheat plants were obtained from 2100 immature embryos in 56–66 days, making it possible to obtain R3 homozygous plants in less than a year.  相似文献   

13.
Perennial ryegrass (Lolium perenne L.) is the most important grass species in areas with a temperate climate. Biolistic transfer of a ubiquitin promoter driven nptII expression cassette into mature or immature tissue derived calli of perennial ryegrass followed by paromomycin selection, resulted in the rapid and efficient production of fertile transgenic ryegrass plants. Transformation efficiencies after paromomycin selection in combination with the nptII selectable marker compared favourably with hygromycin selection in combination with the hph selectable marker. In total 83 independent nptII expressing plants were produced. Transformation frequency was highly affected by genotype, explant, selection regime and the duration of the callus induction period. The optimised transformation protocol for mature embryo derived calli of turf-type or forage-type cultivars resulted in an average transformation efficiency of 5.2% or 6.6% respectively. This converts into 1.7 or 2.2 independent transgenic plants per bombardment. Immature inflorescence- and immature embryo-derived calli were also successfully used as target for the gene transfer, resulting in transformation efficiencies of up to 3.7% or 11.42% respectively. Transgenic plants were transferred to soil 12 or 9 weeks after excision of mature and immature embryos or inflorescences respectively. Transgene integration and expression were confirmed by PCR and ELISA or western blot analysis. Southern blot analysis confirmed the independent nature of the transgenic lines. The majority of lines showed the integration of two to six transgene copies, while 21% of the analysed lines had a single copy insert. A short tissue culture period in comparison to recently published reports seems to be beneficial for the production of normal and fertile transgenic ryegrass plants. Consequently we report for the first time molecular evidence for sexual transgene transmission in fertile transgenic perennial ryegrass.  相似文献   

14.
Transgenic sugarcane plants via microprojectile bombardment   总被引:16,自引:1,他引:15  
Transgenic sugarcane plants were produced by bombardment of embryogenic callus with high-velocity DNA-coated microprojectiles, followed by a selection and regeneration procedure designed for this target tissue. Optimal bombardment conditions for embryogenic callus required microprojectile velocities higher than those previously found effective for sugarcane suspension culture cells. Bombardment of target tissues twice increased the number of transiently expressing cells in regenerable callus regions, to more than 300 per treated plate. Stable transformants were obtained following bombardment with the neomycin phosphotransferase (npt-II) gene under the control of the Emu strong monocot promoter. Stepped increases in antibiotic concentration during selection and regeneration allowed recovery of actively growing callus and plants on media containing geneticin concentrations completely inhibitory to untransformed controls. NPT-II levels in transformed plants were 20–50 times the background levels in control plants in ELISA assays, and Southern analysis revealed integration of one to three copies of the introduced gene in the sugarcane genome. The procedures described yield one to three transgenic plants per treated plate within 16 weeks of bombardment and provide a simple, efficient and broadly applicable system for genetic transformation of sugarcane. A similar approach should be applicable to other members of the Poaceae able to form embryogenic callus.  相似文献   

15.
In order to efficiently complement traditional wheat breeding with genetic transformation technology it will be desirable to introduce transgenes into the ideal genetic background. Poor tissue culture performance is limiting the number of wheat genotypes that can be stably transformed. We statistically analysed the tissue culture response of 38 current European winter wheats and discuss genetic factors influencing this trait. Although regenerable callus cultures could be initiated from immature embryos of all 38 winter wheats analysed, the number of regenerated plants per cultured explant differed highly significantly (p<0.01) among genotypes. Ten cultivars with excellent ranking in this parameter were selected for transformation experiments. Independent transgenic plants were recovered from nine winter wheat genotypes with a frequency ranging between 0.2% and 2.0% of the cultured immature embryos after biolistic transfer of the bar gene and bialaphos selection. The nine transformable winter wheat genotypes included a recently released high-yielding, disease-resistant cultivar (cv. Certo), well established cultivars with elite bread-making quality (cv. Tarso, Alidos) and current breeding lines differing in yield, disease resistance and grain quality. Transgene integration and expression were confirmed by Southern blot analysis, polymerase chain reaction, phosphinothricin acetyltransferase activity assay and herbicide application. Transgene expression was stably transmitted to the sexual progeny of all transgenic lines analysed and segregated in a Mendelian fashion in the majority of lines. The introduction of transgenes into the ideal genetic background will allow a thorough evaluation of their crop improvement potential.  相似文献   

16.
Summary A sugar beet transformation method was developed using particle bombardment of short-term suspension cultures of a breeding line FC607. Highly embryogenic suspension cultures derived from leaf callus were bombarded with the uidA (gusA) reporter gene under the control of either the osmotin or proteinase inhibitor II gene promoter, and the npt II selectable marker gene. Transient uidA expression was visualized as 500–4000 blue units per 200 mg of bombarded cells 2 d after bombardment. Stably-transformed calluses were recovered on both kanamycin and paromomycin media. The greatest number of GUS (+) calluses was obtained when 50 or 100 mgl−1 of kanamycin was applied 2 d after transformation for 3–5 wk, followed by either no selection or reduced levels of the antibiotic. PCR analyses of the GUS (+) callus lines revealed the expected size fragment for uidA and npt II genes. Stable incorporation of the uidA gene into the genome was confirmed by Southern blot analyses. Several transformed embryos were detected by histochemical β-glucuronidase (GUS) staining.  相似文献   

17.
Sugarcane (Saccharum spp. hybrids) is an interspecific hybrid with a highly polyploid and frequently aneuploid genome. This C4 grass accounts for nearly 70% of the global sugar production and more recently has become an important biofuel feedstock. Biolistic gene transfer of plasmid DNA is the most frequently used approach for genetic transformation of sugarcane. Minimal expression cassettes lacking vector backbone sequences (MC) have been reported to support simple transgene integration in other species. In this study, we introduced a MC of nptII into embryogenic callus derived from immature leaf whorl cross-sections by biolistic gene transfer. The precipitation equivalents of 12.5, 25 or 50 ng of the nptII MC were delivered per shot to the target tissue with 1.0 μm gold particles. A total of 203 independent putative transgenic plants were regenerated following 80 bombardments and selection on geneticin or paromomycin containing media and 176 transgenic lines were confirmed with PCR. Twenty independent transgenic lines were selected for Southern blot analysis and expression analysis by NPTII ELISA from each of the three treatments. Genomic DNA from transgenic sugarcane plants displayed two to 13 nptII hybridization signals on Southern blots. There was a trend toward reduced transgene integration complexity and reduced transgene expression levels when lower (12.5 ng) MC was used per shot. These results demonstrate that backbone free MCs can be efficiently integrated and expressed in sugarcane.  相似文献   

18.
We report an efficient whole plant transformation system for Hyoscyamus muticus, an important medicinal plant of the Solanaceous family. We developed a system using a plasmid carrying the nptII and gusA genes, which was delivered into leaf explants by particle bombardment. Ten percent of bombarded leaf explants formed kanamycin-resistant callus, from which putative transgenic plants were recovered. The nptII gene conferring kanamycin resistance was found to be incorporated into the genome of all transgenic plants screened. Over 50% of the kanamycin resistant plants showed strong expression of the non-selected gusA gene. The majority of transgenic plants reached maturity, could be self pollinated, and produced fertile seed. A simple and efficient whole plant transformation system for this medicinal plant is an important step in furthering our understanding of tropane alkaloid production in plants.  相似文献   

19.
Transgenic plants were obtained after particle bombardment of embryogenic callus derived from stem segments of two tetraploid Alstroemeria genotypes with plasmids containing different selection/reporter genes. Firstly, a plasmid containing a firefly luciferase reporter gene driven by the maize ubiquitin promoter (Ubi1), was bombarded into both friable embryogenic callus and proembryos. Transient and stable expression of luciferase was visually detected by a luminometer. This selection method is non-destructive and can be applied over the whole developmental process from callus to embryo and plantlet. Molecular proof of transformation was obtained both by PCR analysis and Southern hybridization. Secondly, a plasmid containing the bar gene together with an uidA gene coding for -glucuronidase both driven by the Ubi1 promoter was bombarded into proembryos. The transgenic callus was effectively selected from the callus clumps four months after bombardment on a medium containing 5 mg/l phosphinotricin (PPT). Selection by PPT was efficient and labour-saving. Stable expression of GUS was confirmed by the histochemical staining assay and molecular proof was obtained by PCR analysis.  相似文献   

20.
Mature seed‐derived callus from an elite Chinese japonica rice (Oryza sativa L.) cv. Eyi 105 was cotransformed with two plasmids, pWRG1515 and pRSSGNA1,containing the selectable marker hygromycin phosphotransferase gene (hpt), the reporter β‐glucuronidase gene (gusA) and the snow‐drop (Galanthus nivalis) lectin gene (gna) via particle bombardment. After two rounds of selection on hygromycin‐containing medium, resistant callus was transferred to hygromycin‐containing regeneration medium for plant regeneration. Twenty‐six independent transgenic rice plants were regenerated from 152 bombarded calli with a transformation frequency of 17%. Seventy‐three percent of transgenic plants contained all three genes, which was revealed by PCR/Southern blot analysis. Thirteen out of 19 transgenic plants containing the gna gene expressed GNA (68%) at various levels with the highest expression being approximately 0.5% of total soluble protein. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parentplants showing 3:1 Mendelian segregation patterns, we identified three independent homozygous lines containing and expressing all three transgenes.Insect bioassay and feeding tests showed that these homozygous lines had significant inhibition to the rice brown planthopper (Nilaparvata lugens, BPH) by decreasing BPH survival and overall fecundity, retarding BPH development and reducing BPH feeding.This is the first report that homozygous transgenic rice lines expressing GNA, developed by genetic transformation and through genetic analysis‐based selection, conferred enhanced resistance to BPH, one of the most damaging insect pests in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号