首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Some antimicrobial peptides have emerged as potential anticancer agents. In contrast to chemotherapeutics, they act primarily by physical disruption of the cancer cell membrane. Selective targeting of these cationic peptides still remains elusive. We focus on the interaction of α-helical peptides NK-2, cathelicidin LL32, and melittin with PC-3 prostate cancer cells, and we provide strong evidence that, amongst the anionic glycans covering the cell surface, sulphated carbohydrates rather than sialic acids are the preferred interaction sites of the peptides. To test the significance of cell surface carbohydrates, a glycan microarray screen with fluorescently labelled peptides has been performed. Amongst 465 mammalian glycan structures on the chip, more than 20 different sulphated glycans were detected as the preferred binding partners of the peptide NK-2. The amount of peptide bound to sialic acid containing oligosaccharides was close to background level. These findings were consistent with microcalorimetric experiments revealing high and low binding enthalpies of peptides to sulphated carbohydrates and to sialic acid, respectively. Enzymatic desialylation of PC-3 cells did not affect peptide-mediated changes in cell metabolism, cell membrane permeabilisation, killing rate, and kinetics. Finally, the cytotoxicity of all peptides could be drastically impaired through the competitive inhibition by chondroitin sulphate, but not by sialic acid and sialylated fetuin.  相似文献   

2.
Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.  相似文献   

3.
The permeabilization of model lipid bilayers by cationic peptides has been studied extensively over decades, with the bee-sting toxin melittin perhaps serving as the canonical example. However, the relevance of these studies to the permeabilization of real bacterial membranes by antimicrobial peptides remains uncertain. Here, we employ single-cell fluorescence microscopy in a detailed study of the interactions of melittin with the outer membrane (OM) and the cytoplasmic membrane (CM) of live Escherichia coli. Using periplasmic green fluorescent protein (GFP) as a probe, we find that melittin at twice the minimum inhibitory concentration first induces abrupt cell shrinkage and permeabilization of the OM to GFP. Within ~4 s of OM permeabilization, the CM invaginates to form inward facing “periplasmic bubbles.” Seconds later the bubbles begin to leak periplasmic GFP into the cytoplasm. Permeabilization is localized, consistent with possible formation of toroidal pores. Within ~20 s, first the OM and then the CM re-seals to GFP. Some 2–20 min later, both CM and OM are re-permeabilized to GFP. We invoke a mechanism based on curvature stress concepts derived from model bilayer studies. The permeabilization and re-sealing events involve sequential, time-dependent build-up of melittin density within the outer and inner leaflets of each bilayer. We also propose a mechanical explanation for the early cell shrinkage event induced by melittin and a variety of other cationic peptides. As peptides gain access to the periplasm, they bind to the anionic peptido-crosslinks of the lipopolysaccharide layer, increasing its longitudinal elastic modulus. The cell wall shrinks because it can withstand the same turgor pressure with smaller overall extension. Shrinkage in turn induces invagination of the CM, preserving its surface area. We conclude by comparing the behavior of different peptides.  相似文献   

4.
Zhang B  Wei H  Zheng X  Zhang J  Sun R  Tian Z 《Peptides》2005,26(3):405-412
NKG2D is an activating receptor expressed on most of human NK cells, one of whose ligands is MICA. Based on the crystal structure of NKG2D-MICA complex, we synthesized three short peptides (P1, P2 and P3), mimicking functional alpha1 and alpha2 domain of MICA. The inhibitory effects of three peptides on NK-92 cells, a human NK cell line against Hela cells were observed and the inhibitory percentage was 38% at maximum for P1+P2+P3 in concentration of 1nM. The same peptides had no effect on NK-92 cell against target cells lacking MICA (K562 cells line). The unrelated peptides as controls had no effect on the system. Two peptides (P2 and P3) were prolonged at one or both ends, and the longer forms of peptides exerted stronger inhibitory effects than their shorter forms. Each combination of two peptides exerted a stronger function than single peptide (P1, P2, P3), indicating that shedding of longer amino acid sequence of alpha1 domain or more domain sites of MICA are better than shorter sequence and fewer sites. P1+P2+P3 revealed the almost same inhibitory rate as the soluble MICA (sMICA). P1+P2+P3 were also able to alleviate the concanavalin A-induced murine autoimmune hepatitis in vivo, conforming the similarity of NKG2D between human and mice. The results demonstrate that MICA-mimicking peptides will be useful to search the specific functional sites for NKG2D-MICA interaction, but also promising in explaining NKG2D-related autoimmunity.  相似文献   

5.
Our previous studies had demonstrated that depletion of endogenous natural killer (NK) cells resulted in an augmented primary antibody response in vivo and in vitro. We have now examined the effect of NK cell depletion on the in vitro secondary response to antigen. Treatment of primed murine spleen cells with anti-NK-1.1 allo-antibody and complement before culture resulted in a significant increase in the magnitude of the antigen-specific plaque-forming cell (PFC) response. This treatment did not affect the proportions of Lyt-2+, L3T4+, or sIg+ cells in the population, however, indicating that the augmentation in PFC was not due to changes in the ratio of T to B cells. Removal of endogenous NK cells had a greater effect on the IgG (indirect) PFC response (100 to 200% increase) than on the IgM (direct) PFC response (25 to 50% increase). In contrast, removal of Lyt-2+ cells before culture affected the IgM and IgG responses similarly. Moreover, the kinetics of augmentation differed between cultures depleted of Lyt-2+ cells and those depleted of NK-1.1+ cells. NK cells appeared to act earlier in the response than did T suppressor cells. The NK-1.1+ cells involved in antibody regulation were not involved in the generation of the in vitro derived T suppressor cells. The conclusion that the regulation of the antibody response by NK-1.1+ cells is distinct from that involving T suppressor cells was confirmed in experiments in which removal of both regulatory cell populations resulted in an increase in PFC that was greater than in cultures depleted of either NK or T suppressor cells.  相似文献   

6.
Increasing resistance of pathogenic bacteria against antibiotics is a severe problem in health care. Natural antimicrobial peptides and derivatives thereof have emerged as promising candidates for “new antibiotics”. In contrast to classical antibiotics, these peptides act by direct physical destabilization of the target cell membrane. Nevertheless, they exhibit a high specificity for bacteria over mammalian cells. However, the precise mechanism of action and the molecular basis for membrane selectivity are still a matter of debate. We have designed a new peptide antibiotic (NK-2) with enhanced antimicrobial activity based on an effector protein of mammalian immune cells (NK-lysin). Here we describe the interaction of this α-helical synthetic peptide with membrane mimetic systems, designed to mimic the lipid compositions of mammalian and bacterial cytoplasmic membranes. Utilizing fluorescence and biosensor assays, we could show that on one hand, NK-2 strongly interacts with negatively charged membranes; on the other hand, NK-2 is able to discriminate, without the necessity of negative charges, between the zwitterionic phospholipids phosphatidylethanolamine (PE) and phosphatidylcholine (PC), the major constituents of the outer leaflet of the cytoplasmic membranes of bacteria and mammalian cells, respectively.  相似文献   

7.
This study presents the time-resolved detection of chemically induced stress upon intracellular signaling cascades by using genetically modified sensor cells based on the human keratinocyte cell line HaCaT. The cells were stably transfected with a HSP72-GFP reporter gene construct to create an optical sensor cell line expressing a stress-inducible reporter protein. The time- and dose-dependent performance of the sensor cells is demonstrated and discussed in comparison to a label-free impedimetric monitoring approach (electric cell-substrate impedance sensing, ECIS). Moreover, a microfluidic platform was established based on μSlidesI(0,4)Luer to allow for a convenient, sterile and incubator-independent time-lapse microscopic observation of the sensor cells. Cell growth was successfully achieved in this microfluidic setup and the cellular response to a cytotoxic substance could be followed in real-time and in a non-invasive, sensitive manner. This study paves the way for the development of micro-total analysis systems that combine optical and impedimetric readouts to enable an overall quantitative characterization of changes in cell metabolism and morphology as a response to toxin exposure. By recording multiple parameters, a detailed discrimination between competing stress- or growth-related mechanisms is possible, thereby presenting an entirely new in vitro alternative to skin irritation tests.  相似文献   

8.
N Frossard  C Advenier 《Life sciences》1991,49(26):1941-1953
The tachykinins, substance P, neurokinin A and neurokinin B, belong to a structural family of peptides. In mammalian airways, substance P and neurokinin A are colocalized to afferent C-fibres. Substance P-containing fibres are close to bronchial epithelium, smooth muscle, mucus glands and blood vessels. Sensory neuropeptides may be released locally, possibly as a result of a local reflex, and produce bronchial obstruction through activation of specific receptors on these various tissues. Three types of tachykinin receptors, namely NK-1, NK-2 and NK-3 receptors, have been characterized by preferential activation by substance P, neurokinin A and neurokinin B respectively. NK-1 and NK-2 receptors were recently cloned. The determination of receptor types involved in the effects of tachykinins in the airways has been done with synthetic agonists and antagonists binding specifically to NK-1, NK-2 and NK-3 receptors. Although the existence of species differences, the conclusion that bronchial smooth muscle contraction is mainly related to activation of NK-2 receptors on bronchial smooth muscle cell has been drawn. The hypothesis of a NK-2 receptor subclassification has been proposed with NK-2A receptor subtype in the guinea-pig airways. Other effects in the airways are related to stimulation of NK-1 receptors on mucus cells, vessels, epithelium and inflammatory cells. A non-receptor-mediated mechanism is also involved in the effect of substance P on inflammatory cells and mast cells.  相似文献   

9.
Papo N  Shai Y 《Biochemistry》2003,42(2):458-466
Lytic peptides comprise a large group of membrane-active peptides used in the defensive and offensive systems of all organisms. Differentiating between their modes of interaction with membranes is crucial for understanding how these peptides select their target cells. Here we utilized SPR to study the interaction between lytic peptides and lipid bilayers (L1 sensor chip). Using studies also on hybrid monolayers (HPA sensor chip) revealed that SPR is a powerful tool for obtaining a real-time monitoring of the steps involved in the mode of action of membrane-active peptides, some of which previously could not be detected directly by other techniques and reported here for the first time. We investigated the mode of action of peptides that represent two major families: (i) the bee venom, melittin, as a model of a non-cell-selective peptide that forms transmembrane pores and (ii) magainin and a diastereomer of melittin (four amino acids were replaced by their D enantiomers), as models of bacteria-selective non-pore-forming peptides. Fitting the SPR data to different interaction models allows differentiating between two major steps: membrane binding and membrane insertion. Melittin binds to PC/cholesterol approximately 450-fold better than its diastereomer and magainin, mainly because it is inserted into the inner leaflet (2/3 of the binding energy), whereas the other two are not. In contrast, there is only a slight difference in the binding of all the peptides to negatively charged PE/PG mono- and bilayer membranes (in the first and second steps), indicating that the inner leaflet contributes only slightly to their binding to PE/PG bilayers. Furthermore, the 100-fold stronger binding of the cell-selective peptides to PE/PG as compared with PC/cholesterol resulted only from electrostatic attraction to the negatively charged headgroups of the outer leaflet. These results clearly differentiate between the two general mechanisms: pore formation by melittin only in zwitterionic membranes and a detergent-like effect (carpet mechanism) for all the peptides in negatively charged membranes, in agreement with their biological function.  相似文献   

10.
Many data suggest the deep involvement of the substance P (SP)/neurokinin (NK)-1 receptor system in cancer: (1) Tumor cells express SP, NK-1 receptors and mRNA for the tachykinin NK-1 receptor; (2) Several isoforms of the NK-1 receptor are expressed in tumor cells; (3) the NK-1 receptor is involved in the viability of tumor cells; (4) NK-1 receptors are overexpressed in tumor cells in comparison with normal ones and malignant tissues express more NK-1 receptors than benign tissues; (5) Tumor cells expressing the most malignant phenotypes show an increased percentage of NK-1 receptor expression; (6) The expression of preprotachykinin A is increased in tumor cells in comparison with the levels found in normal cells; (7) SP induces the proliferation and migration of tumor cells and stimulates angiogenesis by increasing the proliferation of endothelial cells; (8) NK-1 receptor antagonists elicit the inhibition of tumor cell growth; (9) The specific antitumor action of NK-1 receptor antagonists on tumor cells occurs through the NK-1 receptor; (10) Tumor cell death is due to apoptosis; (11) NK-1 receptor antagonists inhibit the migration of tumor cells and neoangiogenesis. The NK-1 receptor is a therapeutic target in cancer and NK-1 receptor antagonists could be considered as broad-spectrum antitumor drugs for the treatment of cancer. It seems that a common mechanism for cancer cell proliferation mediated by SP and the NK-1 receptor is triggered, as well as a common mechanism exerted by NK-1 receptor antagonists on tumor cells, i.e. apoptosis.  相似文献   

11.
Peptides derived from the bee-venom melittin were fitted with the haptenic group dinitrocarboxyphenyl(Dncp) and tested in out-bred guinea pigs for immunogenicity by measuring the IgG anti-Dncp antibody response by ELISA. Dncp-conjugates comprising virtually the entire melittin proved to be strong immunogens producing antibody responses comparable to those of proteins. Weak responses were obtained with considerably shortened seqences. Conjugates with N-terminal Dncp gave markedly reduced antibody responses compared to peptides with C-terminal Dncp. An N-terminal biotinyl substituent abolished the immune response whereas N-terminal lauryl and caprylyl had little effect. Insertion of L-proline into a hexadecapeptide conjugate abolishing the possibility of helix formation gave an immunogen to which individual animals clearly responded on a low level. Oligomerisation, but not the cytolytic activity of melittin peptides, may contribute to the immunogenicities observed.  相似文献   

12.
We have previously shown that the receptor for substance P (SP), neurokinin-1 receptor (NK-1R), is a marker of human mucosal but not peripheral mononuclear cells. In the present study, we investigate NK-1R expression in the human colonic mucosa in vivo, particularly in the epithelial cells. We investigate the influence of proinflammatory Th1 cytokines and SP on expression and function of NK-1R in colonic epithelial cells in vitro. Using in situ hybridization to detect NK-1R mRNA, and immunohistochemistry to detect NK-1R protein, colonic epithelial cells were found to express NK-1R in vivo. In contrast, colon epithelial cell lines (Caco-2, HT29, SW620, T84) were negative for NK-1R mRNA and protein. However, stimulation with a proinflammatory cytokine cocktail containing IFN-gamma, TNF-alpha, and IL-1beta, caused induction of NK-1R expression. Expression of NK-1R in human colonic epithelial cells in vivo may therefore reflect cytokine conditioning by the mucosal microenvironment. SP did not alter ion transport in monolayers of cytokine-treated T84 cells. While SP stimulated epithelial ion transport in colonic mucosae ex vivo, this was not a direct effect of SP on the epithelial cells, and appeared to be neurally mediated. However, SP (10(-10)-10(-8) M) elicited a dose-dependent proliferative effect on cytokine-stimulated, but not unstimulated, SW620 cells. Proliferation of the epithelial cells in response to SP was mediated specifically via cytokine-induced NK-1R, since an NK-1R-specific antagonist (Spantide 1) completely blocked SP-mediated proliferation in the cytokine-treated cells. Our results therefore demonstrate that proinflammatory cytokines induce expression of NK-1R in human colonic epithelial cell lines, and that SP induces proliferation of the epithelial cells via cytokine-induced NK-1R.  相似文献   

13.
Two peptides with antimicrobial and cytolytic properties were purified from an extract of the skin of Tago's brown frog Rana tagoi. The primary structure of one peptide (FLPILGKLLS(10)GIL.NH(2)) identifies it as a member of the temporin family, whereas the second peptide (AIGSILGALA(10)KGLPTLISWI(20)KNR.NH(2)) displays 78% sequence identity to melittin from the venom of the honeybee Apis florea. Compared with melittin, the melittin-related peptide (MRP) was equipotent in inhibiting the growth of the Gram-positive bacterium Staphylococcus aureus, 5-fold less potent against the Gram-negative bacterium Escherichia coli and against the fungal pathogen, Candida albicans. MRP was 13-fold less hemolytic than melittin against human erythrocytes and 4- and 5-fold less cytolytic against mouse EL4 T-lymphoma-derived cells and L929 fibroblasts, respectively. However, at non-cytotoxic concentrations (相似文献   

14.
It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell© technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10−7 M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.  相似文献   

15.
Neurokinin 1 (NK-1) is a member of seven transmembrane G protein-coupled receptors. NK-1 interacts with peptides belonging to the tachykinin family and showed preference for substance P (SP). NK-1 is induced in bone marrow (BM) stroma. NK-1-SP interactions could lead to changes in the functions of lymphohematopoietic stem cell (LHSC). This report describes the cloning and characterization of a cDNA clone isolated after screening of three cDNA libraries with an NK-1-specific probe. Based on its expression, the cDNA clone was designated hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Computational analyses predicted that HGFIN is transmembrane with the carboxyl terminal extracellular. Proteomic studies with purified HGFIN and SP showed noncovalent interactions. HGFIN-SP interactions were supported by transient expression of HGFIN in CHO cells. Transient expression of HGFIN in unstimulated BM fibroblasts led to the induction of endogenous NK-1. Since NK-1 expression in BM fibroblasts requires cell stimulation, these studies suggest that there might be intracellular crosstalk between NK-1 and HGFIN. Northern analyses with total RNA from different BM cell subsets showed that HGFIN was preferentially expressed in differentiated cells. This suggests that HGFIN might be involved in the maturation of LHSC. HGFIN was detected in several other tissues, but not in brain where NK-1 is constitutively expressed.  相似文献   

16.
We have examined the cytolytic effects of the membrane-active peptide, melittin, on a human lymphoblastoid cell line (HMy2) in the context of the use of melittin as the toxic component of an immunotoxin. The toxicity of melittin for HMy2 cells was linear over the concentration range 0.875–3.5 μM. Increased incubation times failed to result in significant cell death at concentrations of melittin below 0.875 μM. Kinetic analysis revealed that the cytolytic activity of melittin was independent of time of exposure beyond 90 min. Flow cytometric analysis of HMy2 cells incubated with FITC-labeled melittin demonstrated that the cells could incorporate up to 2.5 × 105 FITC-melittin molecules per cell with no reduction in viability. Extrapolation of this data indicates that 106 melittin molecules per cell are required for maximum cytotoxicity to HMy2 cells. Further analysis of HMy2 cells that incorporated melittin, but that remained viable, revealed that these cells were able to reduce the number of melittin molecules per cell over time. The data indicate a potential threshold value for the number of melittin molecules that may be required to be delivered to the cell surface in the form of an immunotoxin if effective selective cell death is to be achieved. J. Cell. Biochem. 68:164–173, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The peptide NK-2 is an effective antimicrobial agent with low hemolytic and cytotoxic activities and is thus a promising candidate for clinical applications. It comprises the alpha-helical, cationic core region of porcine NK-lysin a homolog of human granulysin and of amoebapores of pathogenic amoeba. Here we visualized the impact of NK-2 on Escherichia coli by electron microscopy and used NK-2 as a template for sequence variations to improve the peptide stability and activity and to gain insight into the structure/function relationships. We synthesized 18 new peptides and tested their activities on seven Gram-negative and one Gram-positive bacterial strains, human erythrocytes, and HeLa cells. Although all peptides appeared unordered in buffer, those active against bacteria adopted an alpha-helical conformation in membrane-mimetic environments like trifluoroethanol and negatively charged phosphatidylglycerol (PG) liposomes that mimick the cytoplasmic membrane of bacteria. This conformation was not observed in the presence of liposomes consisting of zwitterionic phosphatidylcholine (PC) typical for the human cell plasma membrane. The interaction was paralleled by intercalation of these peptides into PG liposomes as determined by FRET spectroscopy. A comparative analysis between biological activity and the calculated peptide parameters revealed that the decisive factor for a broad spectrum activity is not the peptide overall hydrophobicity or amphipathicity, but the possession of a minimal positive net charge plus a highly amphipathic anchor point of only seven amino acid residues (two helical turns).  相似文献   

18.
Altered expression of glycolysis proteins is an important yet poorly understood characteristic of cancer. To better understand the glycolytic changes during tumorigenesis, we designed a liquid chromatography multiple reaction monitoring (LC-MRM) assay targeting the "glycolysis proteome" in MCF-7 breast cancer cells, using isotope-coded dimethylation of peptides for relative quantification. In silico, dimethyl labeled tryptic peptides [M + 2H](2+) (of length n) and their y(n-1) fragment ions were determined based on UniprotKB database sequence entries for glycolysis proteins, related branching pathways, and reference proteins. Using predicted transitions ([M + 2H](2+) → y(n-1)), MRM-initiated detection and sequencing (MIDAS) was performed on a dimethyl-labeled, tryptic digest from MCF-7 cells, using two-dimensional liquid chromatography mass spectrometry analysis. Three transitions for each peptide were selected from identified spectra and assessed using 1D-LC-MRM-MS. Collision energy (CE) and dwell times were optimized and matching transitions for "heavy" isotope-coded dimethylated peptides were calculated. Resulting LC-MRM transitions were then used to measure changes in the glycolytic proteome in insulin-like growth factor-1 (IGF-1)-stimulated MCF-7 cells and other breast cell lines. Increases in the expression of glycolysis proteins leading to lactic acid production were observed common to IGF-1-stimulated MCF-7 cells and the invasive MDA-MB-231 cell line. Preliminary analysis of lung tumors with varied states of differentiation demonstrated the clinical applicability of LC-MRM and showed decreased levels of PGK1 in poorly differentiated tumors.  相似文献   

19.

The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.

  相似文献   

20.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 x 10(6) M(-1) and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (delta G0), -8.8 kcal mol(-1), obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号