首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Yang R  Gao H  Wang X  Zhang J  Zeng ZB  Wu R 《Genetics》2007,177(3):1859-1870
Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that control developmental patterns of complex dynamic traits. Original functional mapping has been constructed within the context of simple interval mapping, without consideration of separate multiple linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval mapping. Within this so-called composite functional-mapping framework, functional mapping models the time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful parametric function, whereas composite interval mapping models the time-dependent genetic effects of the markers outside the test interval to control the genome background using a flexible nonparametric approach based on Legendre polynomials. Such a semiparametric framework was formulated by a maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the test of the mathematical parameters that define the QTL effects and the regression coefficients of the Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate the statistical behavior of composite functional mapping and compare its advantage in separating multiple linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the same chromosome, that control the developmental trajectory of leaf age.  相似文献   

2.
Bayesian mapping of quantitative trait loci for complex binary traits   总被引:13,自引:0,他引:13  
Yi N  Xu S 《Genetics》2000,155(3):1391-1403
A complex binary trait is a character that has a dichotomous expression but with a polygenic genetic background. Mapping quantitative trait loci (QTL) for such traits is difficult because of the discrete nature and the reduced variation in the phenotypic distribution. Bayesian statistics are proved to be a powerful tool for solving complicated genetic problems, such as multiple QTL with nonadditive effects, and have been successfully applied to QTL mapping for continuous traits. In this study, we show that Bayesian statistics are particularly useful for mapping QTL for complex binary traits. We model the binary trait under the classical threshold model of quantitative genetics. The Bayesian mapping statistics are developed on the basis of the idea of data augmentation. This treatment allows an easy way to generate the value of a hypothetical underlying variable (called the liability) and a threshold, which in turn allow the use of existing Bayesian statistics. The reversible jump Markov chain Monte Carlo algorithm is used to simulate the posterior samples of all unknowns, including the number of QTL, the locations and effects of identified QTL, genotypes of each individual at both the QTL and markers, and eventually the liability of each individual. The Bayesian mapping ends with an estimation of the joint posterior distribution of the number of QTL and the locations and effects of the identified QTL. Utilities of the method are demonstrated using a simulated outbred full-sib family. A computer program written in FORTRAN language is freely available on request.  相似文献   

3.
Yang R  Xu S 《Genetics》2007,176(2):1169-1185
Many quantitative traits are measured repeatedly during the life of an organism. Such traits are called dynamic traits. The pattern of the changes of a dynamic trait is called the growth trajectory. Studying the growth trajectory may enhance our understanding of the genetic architecture of the growth trajectory. Recently, we developed an interval-mapping procedure to map QTL for dynamic traits under the maximum-likelihood framework. We fit the growth trajectory by Legendre polynomials. The method intended to map one QTL at a time and the entire QTL analysis involved scanning the entire genome by fitting multiple single-QTL models. In this study, we propose a Bayesian shrinkage analysis for estimating and mapping multiple QTL in a single model. The method is a combination between the shrinkage mapping for individual quantitative traits and the Legendre polynomial analysis for dynamic traits. The multiple-QTL model is implemented in two ways: (1) a fixed-interval approach where a QTL is placed in each marker interval and (2) a moving-interval approach where the position of a QTL can be searched in a range that covers many marker intervals. Simulation study shows that the Bayesian shrinkage method generates much better signals for QTL than the interval-mapping approach. We propose several alternative methods to present the results of the Bayesian shrinkage analysis. In particular, we found that the Wald test-statistic profile can serve as a mechanism to test the significance of a putative QTL.  相似文献   

4.
Yi N  Banerjee S  Pomp D  Yandell BS 《Genetics》2007,176(3):1855-1864
Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental crosses. We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal probit model (also called threshold model) that assumes a latent continuous trait underlies the generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit model, combined with the composite model space framework for continuous traits, offers a convenient way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F(2) intercross of mice. Utility and flexibility of the method are also demonstrated using a simulated data set. Our method has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits in experimental crosses.  相似文献   

5.
A novel Bayesian gene mapping method, which can simultaneously utilize both molecular marker and gene expression data, is introduced. The approach enables a quantitative or qualitative phenotype to be expressed as a linear combination of the marker genotypes, gene expression levels, and possible genotype x gene expression interactions. The interaction data, given as marker-gene pairs, contains possible in cis and in trans effects obtained from earlier allelic expression studies, genetical genomics studies, biological hypotheses, or known pathways. The method is presented for an inbred line cross design and can be easily generalized to handle other types of populations and designs. The model selection is based on the use of effect-specific variance components combined with Jeffreys' non-informative prior--the method operates by adaptively shrinking marker, expression, and interaction effects toward zero so that non-negligible effects are expected to occur only at very few positions. The estimation of the model parameters and the handling of missing genotype or expression data is performed via Markov chain Monte Carlo sampling. The potential of the method including heritability estimation is presented using simulated examples and novel summary statistics. The method is also applied to a real yeast data set with known pathways.  相似文献   

6.
MOTIVATION: Functional mapping that embeds the developmental mechanisms of complex traits shows great power to study the dynamic pattern of genetic effects triggered by individual quantitative trait loci (QTLs). A full-sib family, produced by crossing two heterozygous parents, is characteristic of uncertainties about cross-type at a locus and linkage phase between different loci. Integrating functional mapping into a full-sib family requires a model selection procedure capable of addressing these uncertainties. 3FunMap, written in VC++ 6.0, provides a flexible and extensible platform to perform full-sib functional mapping of dynamic traits. Functions in the package encompass linkage phase determination, marker map construction and the pattern identification of QTL segregation, dynamic tests of QTL effects, permutation tests and numerical simulation. We demonstrate the features of 3FunMap through real data analysis and computer simulation. AVAILABILITY: http://statgen.psu.edu/software.  相似文献   

7.
Hou W  Li H  Zhang B  Huang M  Wu R 《Heredity》2008,101(4):321-328
Functional mapping has emerged as a next-generation statistical tool for mapping quantitative trait loci (QTL) that affect complex dynamic traits. In this article, we incorporated the idea of nonlinear mixed-effect (NLME) models into the mixture-based framework of functional mapping, aimed to generalize the spectrum of applications for functional mapping. NLME-based functional mapping, implemented with the linearization algorithm based on the first-order Taylor expansion, can provide reasonable estimates of QTL genotypic-specific curve parameters (fixed effect) and the between-individual variation of these parameters (random effect). Results from simulation studies suggest that the NLME-based model is more general than traditional functional mapping. The new model can be useful for the identification of the ontogenetic patterns of QTL genetic effects during time course.  相似文献   

8.
Huang H  Eversley CD  Threadgill DW  Zou F 《Genetics》2007,176(4):2529-2540
A Bayesian methodology has been developed for multiple quantitative trait loci (QTL) mapping of complex binary traits that follow liability threshold models. Unlike most QTL mapping methods where only one or a few markers are used at a time, the proposed method utilizes all markers across the genome simultaneously. The outperformance of our Bayesian method over the traditional single-marker analysis and interval mapping has been illustrated via simulations and real data analysis to identify candidate loci associated with colorectal cancer.  相似文献   

9.
Pleiotropy has played an important role in understanding quantitative traits. However, the extensiveness of this effect in the genome and its consequences for plant improvement have not been fully elucidated. The aim of this study was to identify pleiotropic quantitative trait loci (QTLs) in maize using Bayesian multiple interval mapping. Additionally, we sought to obtain a better understanding of the inheritance, extent and distribution of pleiotropic effects of several components in maize production. The design III procedure was used from a population derived from the cross of the inbred lines L-14-04B and L-08-05F. Two hundred and fifty plants were genotyped with 177 microsatellite markers and backcrossed to both parents giving rise to 500 backcrossed progenies, which were evaluated in six environments for grain yield and its components. The results of this study suggest that mapping isolated traits limits our understanding of the genetic architecture of quantitative traits. This architecture can be better understood by using pleiotropic networks that facilitate the visualization of the complexity of quantitative inheritance, and this characterization will help to develop new selection strategies. It was also possible to confront the idea that it is feasible to identify QTLs for complex traits such as grain yield, as pleiotropy acts prominently on its subtraits and as this "trait" can be broken down and predicted almost completely by the QTLs of its components. Additionally, pleiotropic QTLs do not necessarily signify pleiotropy of allelic interactions, and this indicates that the pervasive pleiotropy does not limit the genetic adaptability of plants.  相似文献   

10.
Complex traits important for humans are often correlated phenotypically and genetically. Joint mapping of quantitative-trait loci (QTLs) for multiple correlated traits plays an important role in unraveling the genetic architecture of complex traits. Compared with single-trait analysis, joint mapping addresses more questions and has advantages for power of QTL detection and precision of parameter estimation. Some statistical methods have been developed to map QTLs underlying multiple traits, most of which are based on maximum-likelihood methods. We develop here a multivariate version of the Bayes methodology for joint mapping of QTLs, using the Markov chain-Monte Carlo (MCMC) algorithm. We adopt a variance-components method to model complex traits in outbred populations (e.g., humans). The method is robust, can deal with an arbitrary number of alleles with arbitrary patterns of gene actions (such as additive and dominant), and allows for multiple phenotype data of various types in the joint analysis (e.g., multiple continuous traits and mixtures of continuous traits and discrete traits). Under a Bayesian framework, parameters--including the number of QTLs--are estimated on the basis of their marginal posterior samples, which are generated through two samplers, the Gibbs sampler and the reversible-jump MCMC. In addition, we calculate the Bayes factor related to each identified QTL, to test coincident linkage versus pleiotropy. The performance of our method is evaluated in simulations with full-sib families. The results show that our proposed Bayesian joint-mapping method performs well for mapping multiple QTLs in situations of either bivariate continuous traits or mixed data types. Compared with the analysis for each trait separately, Bayesian joint mapping improves statistical power, provides stronger evidence of QTL detection, and increases precision in estimation of parameter and QTL position. We also applied the proposed method to a set of real data and detected a coincident linkage responsible for determining bone mineral density and areal bone size of wrist in humans.  相似文献   

11.
Bayesian LASSO for quantitative trait loci mapping   总被引:6,自引:1,他引:6       下载免费PDF全文
Yi N  Xu S 《Genetics》2008,179(2):1045-1055
The mapping of quantitative trait loci (QTL) is to identify molecular markers or genomic loci that influence the variation of complex traits. The problem is complicated by the facts that QTL data usually contain a large number of markers across the entire genome and most of them have little or no effect on the phenotype. In this article, we propose several Bayesian hierarchical models for mapping multiple QTL that simultaneously fit and estimate all possible genetic effects associated with all markers. The proposed models use prior distributions for the genetic effects that are scale mixtures of normal distributions with mean zero and variances distributed to give each effect a high probability of being near zero. We consider two types of priors for the variances, exponential and scaled inverse-chi(2) distributions, which result in a Bayesian version of the popular least absolute shrinkage and selection operator (LASSO) model and the well-known Student's t model, respectively. Unlike most applications where fixed values are preset for hyperparameters in the priors, we treat all hyperparameters as unknowns and estimate them along with other parameters. Markov chain Monte Carlo (MCMC) algorithms are developed to simulate the parameters from the posteriors. The methods are illustrated using well-known barley data.  相似文献   

12.
FunMap: functional mapping of complex traits   总被引:4,自引:0,他引:4  
SUMMARY: FunMap is a Web-based user interface designed to map quantitative trait loci (QTL) affecting function-valued traits or infinite-dimensional traits in well-structured pedigrees or natural populations. User input includes three files: longitudinal trait data, marker genotypes and/or a linkage map. This software allows for a systematic genome-wide scan and significance test of QTL throughout the map. The dynamic change of QTL effects during the time course of growth is automatically drawn, from which specific biological hypotheses regarding the genetic control mechanisms of growth and development can be tested. AVAILABILITY: http://web.biostat.ufl.edu/~cma/genetics/software.html  相似文献   

13.
MOTIVATION: In most quantitative trait locus (QTL) mapping studies, phenotypes are assumed to follow normal distributions. Deviations from this assumption may affect the accuracy of QTL detection and lead to detection of spurious QTLs. To improve the robustness of QTL mapping methods, we replaced the normal distribution for residuals in multiple interacting QTL models with the normal/independent distributions that are a class of symmetric and long-tailed distributions and are able to accommodate residual outliers. Subsequently, we developed a Bayesian robust analysis strategy for dissecting genetic architecture of quantitative traits and for mapping genome-wide interacting QTLs in line crosses. RESULTS: Through computer simulations, we showed that our strategy had a similar power for QTL detection compared with traditional methods assuming normal-distributed traits, but had a substantially increased power for non-normal phenotypes. When this strategy was applied to a group of traits associated with physical/chemical characteristics and quality in rice, more main and epistatic QTLs were detected than traditional Bayesian model analyses under the normal assumption.  相似文献   

14.
Multi-QTL mapping for quantitative traits using distorted markers   总被引:2,自引:0,他引:2  
Marker segregation distortion is a common natural phenomenon. However, relatively little is known about utilizing distorted markers for detecting quantitative trait loci (QTL). Therefore, in this study we proposed a multi-QTL mapping approach that uses distorted markers. First, the information from all markers, including distorted markers, was used to detect segregation distortion loci (SDL). Second, the information from the detected SDL was used to correct the conditional probabilities of the QTL genotypes conditional on marker information, and these corrected probabilities were then incorporated into a multi-QTL mapping methodology. Finally, the proposed approach was validated by both Monte Carlo simulation studies and real data analysis. The results from the simulation studies show that as long as one or two SDL are placed around the simulated QTL, there are no differences between the new method and the ordinary interval mapping method in terms of the power of QTL detection or the estimates of the position and dominant effects of the QTL. However, the power of QTL detection is higher under the dominant genetic model of SDL than under the additive genetic model, and the estimate for the additive effect of QTL using the new method is significantly different from the estimate obtained using ordinary interval mapping. The above results were further confirmed by the detection of QTL for dried soymilk in 222 F2:4 families in soybean.  相似文献   

15.
Wu C  Li G  Zhu J  Cui Y 《PloS one》2011,6(9):e24902
Functional mapping has been a powerful tool in mapping quantitative trait loci (QTL) underlying dynamic traits of agricultural or biomedical interest. In functional mapping, multivariate normality is often assumed for the underlying data distribution, partially due to the ease of parameter estimation. The normality assumption however could be easily violated in real applications due to various reasons such as heavy tails or extreme observations. Departure from normality has negative effect on testing power and inference for QTL identification. In this work, we relax the normality assumption and propose a robust multivariate t-distribution mapping framework for QTL identification in functional mapping. Simulation studies show increased mapping power and precision with the t distribution than that of a normal distribution. The utility of the method is demonstrated through a real data analysis.  相似文献   

16.
Saccharomyces cerevisiae has become a favorite production organism in industrial biotechnology presenting new challenges to yeast engineers in terms of introducing advantageous traits such as stress tolerances. Exploring subspecies diversity of S. cerevisiae has identified strains that bear industrially relevant phenotypic traits. Provided that the genetic basis of such phenotypic traits can be identified inverse engineering allows the targeted modification of production strains. Most phenotypic traits of interest in S. cerevisiae strains are quantitative, meaning that they are controlled by multiple genetic loci referred to as quantitative trait loci (QTL). A straightforward approach to identify the genetic basis of quantitative traits is QTL mapping which aims at the allocation of the genetic determinants to regions in the genome. The application of high-density oligonucleotide arrays and whole-genome re-sequencing to detect genetic variations between strains has facilitated the detection of large numbers of molecular markers thus allowing high-resolution QTL mapping over the entire genome. This review focuses on the basic principle and state of the art of QTL mapping in S. cerevisiae. Furthermore we discuss several approaches developed during the last decade that allow down-scaling of the regions identified by QTL mapping to the gene level. We also emphasize the particular challenges of QTL mapping in nonlaboratory strains of S. cerevisiae.  相似文献   

17.
Kao CH 《Genetics》2004,167(4):1987-2002
Endosperm traits are trisomic inheritant and are of great economic importance because they are usually directly related to grain quality. Mapping for quantitative trait loci (QTL) underlying endosperm traits can provide an efficient way to genetically improve grain quality. As the traditional QTL mapping methods (diploid methods) are usually designed for traits under diploid control, they are not the ideal approaches to map endosperm traits because they ignore the triploid nature of endosperm. In this article, a statistical method considering the triploid nature of endosperm (triploid method) is developed on the basis of multiple-interval mapping (MIM) to map for the underlying QTL. The proposed triploid MIM method is derived to broadly use the marker information either from only the maternal plants or from both the maternal plants and their embryos in the backcross and F2 populations for mapping endosperm traits. Due to the use of multiple intervals simultaneously to take multiple QTL into account, the triploid MIM method can provide better detection power and estimation precision, and as shown in this article it is capable of analyzing and searching for epistatic QTL directly as compared to the traditional diploid methods and current triploid methods using only one (or two) interval(s). Several important issues in endosperm trait mapping, such as the relation and differences between the diploid and triploid methods, variance components of genetic variation, and the problems if effects are present and ignored, are also addressed. Simulations are performed to further explore these issues, to investigate the relative efficiency of different experimental designs, and to evaluate the performance of the proposed and current methods in mapping endosperm traits. The MIM-based triploid method can provide a powerful tool to estimate the genetic architecture of endosperm traits and to assist the marker-assisted selection for the improvement of grain quality in crop science. The triploid MIM FORTRAN program for mapping endosperm traits is available on the worldwide web (http://www.stat.sinica.edu.tw/chkao/).  相似文献   

18.
Dimension reduction for mapping mRNA abundance as quantitative traits   总被引:3,自引:0,他引:3  
Lan H  Stoehr JP  Nadler ST  Schueler KL  Yandell BS  Attie AD 《Genetics》2003,164(4):1607-1614
The advent of sophisticated genomic techniques for gene mapping and microarray analysis has provided opportunities to map mRNA abundance to quantitative trait loci (QTL) throughout the genome. Unfortunately, simple mapping of each individual mRNA trait on the scale of a typical microarray experiment is computationally intensive, subject to high sample variance, and therefore underpowered. However, this problem can be addressed by capitalizing on correlation among the large number of mRNA traits. We present a method to reduce the dimensionality for mapping gene expression data as quantitative traits. We used a blind method, principal components, and a sighted method, hierarchical clustering seeded by disease relevant traits, to define new traits composed of a small collection of promising mRNAs. We validated the principle of our approach by mapping the expression levels of metabolism genes in a population of F(2)-ob/ob mice derived from the BTBR and C57BL/6J strains. We found that lipogenic and gluconeogenic mRNAs, which are known targets of insulin action, were closely associated with the insulin trait. Multiple interval mapping and Bayesian interval mapping of this new trait revealed significant linkages to chromosome regions that were contained in loci associated with type 2 diabetes in this same mouse sample. As a further statistical refinement, we show that principal component analysis also effectively reduced dimensions for mapping phenotypes composed of mRNA abundances.  相似文献   

19.
Yi N  Xu S 《Genetics》2001,157(4):1759-1771
Quantitative trait loci (QTL) are easily studied in a biallelic system. Such a system requires the cross of two inbred lines presumably fixed for alternative alleles of the QTL. However, development of inbred lines can be time consuming and cost ineffective for species with long generation intervals and severe inbreeding depression. In addition, restriction of the investigation to a biallelic system can sometimes be misleading because many potentially important allelic interactions do not have a chance to express and thus fail to be detected. A complicated mating design involving multiple alleles mimics the actual breeding system. However, it is difficult to develop the statistical model and algorithm using the classical maximum-likelihood method. In this study, we investigate the application of a Bayesian method implemented via the Markov chain Monte Carlo (MCMC) algorithm to QTL mapping under arbitrarily complicated mating designs. We develop the method under a mixed-model framework where the genetic values of founder alleles are treated as random and the nongenetic effects are treated as fixed. With the MCMC algorithm, we first draw the gene flows from the founders to the descendants for each QTL and then draw samples of the genetic parameters. Finally, we are able to simultaneously infer the posterior distribution of the number, the additive and dominance variances, and the chromosomal locations of all identified QTL.  相似文献   

20.
Zhao W  Wu R  Ma CX  Casella G 《Genetics》2004,167(4):2133-2137
By integrating the underlying developmental mechanisms for the phenotypic formation of traits into a mapping framework, functional mapping has emerged as an important statistical approach for mapping complex traits. In this note, we explore the feasibility of using the simplex algorithm as an alternative to solve the mixture-based likelihood for functional mapping of complex traits. The results from the simplex algorithm are consistent with those from the traditional EM algorithm, but the simplex algorithm has considerably reduced computational times. Moreover, because of its nonderivative nature and easy implementation with current software, the simplex algorithm enjoys an advantage over the EM algorithm in the dynamic modeling and analysis of complex traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号