首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have analyzed the action of nitric oxide on the synaptic inputs of spiking local interneurons that form part of the local circuits in the terminal abdominal ganglion of the crayfish, Pacifastacus leniusculus. Increasing the availability of NO in the ganglion by bath applying the NO donor SNAP, or the substrate for its synthesis, L-arginine, caused a depression of synaptic inputs onto the interneurons evoked by electrically stimulating mechanosensory neurons in nerve 2 of the terminal ganglion. Conversely, reducing the availability of NO by bath application of an NO scavenger, PTIO, and an inhibitor of nitric oxide synthase, L-NAME, increased the amplitude of the evoked potentials. These results suggest that elevated NO concentration causes a depression of the synaptic inputs to spiking local interneurons. To determine whether these effects could be mediated through an NO/cGMP signaling pathway we bath applied a membrane permeable analogue of cGMP, 8-br-cGMP, which decreased the amplitude of the inputs to the interneurons. Bath application of an inhibitor of soluble guanlylyl cyclase, ODQ, produced an increase in the amplitude of the synaptic inputs. Our results suggest that NO causes a depression of synaptic inputs to spiking local interneurons probably by acting through an NO/cGMP signaling pathway. Moreover, application of NO scavengers modulates the inputs to these interneurons, suggesting that NO is continuously providing a powerful and dynamic means of modulating the outputs of local circuits.  相似文献   

2.
The modulation by condition of the lack or the excess of nitric oxide (NO) on cardiovascular action of secretin in diabetic rats was investigated. In vitro the isolated heart function and in vivo, the systolic (SBP), diastolic (DSP) blood pressure and heart rate (HR) were measured. Secretin evoked inotropic positive effect and increased coronary outflow (CO), in vivo did not increase systemic pressure and the highest dose of the peptide increased the heart rate. NO synthase inhibitor, N(G) nitro-L-arginine methyl ester (L-NAME) deeply increased the systemic pressure and in vitro decreased coronary outflow. L-arginine and sodium nitroprusside (SNP) did not influence the isolated heart function and in vivo decreased the systemic pressure. L-NAME preserved the inotropic positive effect of secretin and the increase of the coronary outflow. In vivo co-administration of L-NAME+secretin evoked hypotensive effect and abolished the increase of the heart rate after the highest dose of the peptide. L-arginine abolished inotropic positive effect of the peptide and the increase of coronary outflow. In vivo co-administration of these substances caused hypotension and attenuated the increase of the heart rate after the highest dose of secretin. Co-injection of SNP and secretin preserved the inotropic effect of secretin and abolished the increase of the coronary outflow. In vivo infusion of SNP+secretin evoked hypotension and similarly to L-arginine, SNP abolished tachycardia induced by the highest dose of secretin. Both the lack and the excess of nitric oxide changed the cardiovascular action of secretin in diabetic rats.  相似文献   

3.
Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator.  相似文献   

4.
Kawano T  Nomura M  Nisikado A  Nakaya Y  Ito S 《Life sciences》2003,73(23):3017-3026
Nitric oxide (NO) plays an important role in glucose and lipid metabolism. We previously reported that NO synthesis inhibitors, such as NG-nitro-L-arginine methyl ester (L-NAME), deteriorate insulin sensitivity and lipid metabolism, while the addition of L-arginine reverses this deterioration. L-arginine is a precursor of NO, and is used as a supplement in the US. In the present study, we evaluated whether the administration of L-arginine alone improves insulin resistance and serum lipid levels in insulin-resistant and hypertriglycemic rat models. Diabetic rats were divided into 3 groups: the control (Cont) group (standard diet), the L-NAME group (diet containing L-NAME), and the Arg group (diet containing L-arginine). After 4 weeks of breeding, urinary NOx, glucose infusion rate (GIR), glucose and lipid tolerance tests were performed. Urinary NOx levels were significantly lower in the L-NAME group than in the Cont group. The GIR in the L-NAME group was significantly lower than that in the Cont group, suggesting increased insulin resistance. However, the administration of L-arginine did not influence insulin resistance in the Arg group. Oral lipid administration significantly increased plasma triglyceride levels in the L-NAME group and plasma triglyceride levels were significantly lower in the Arg group than in the Cont group. The area under the curve of plasma triglyceride levels after oral lipid administration was larger in the L-NAME group than in the Cont group. The administration of L-NAME increased insulin resistance and decreased lipid metabolism. L-arginine significantly increased urinary NO secretion but did not improve insulin resistance, although it did improve lipid metabolism. These findings suggest that supplementation of L-arginine cannot improve insulin resistance in diabetic rats probably due to increased insulin secretion by L-arginine.  相似文献   

5.
The role of nitric oxide (NO) as a possible transmitter for nonadrenergic inhibitory transmission was studied on isolated muscle strips of the guinea pig gastro-intestinal tract (GIT) using sucrose-gap technique. In addition, the voltage clamp and intracellular dialysis techniques were employed to study the effects of sodium nitroprusside (NP) on isolated smooth muscle (SM) cells of thetaenia coli. N-nitro-L-arginine methyl ester (L-NAME), a blocker of NO synthesis from L-arginine (0.1 mM), was shown to selectively suppress the apamin-resistant component of nonadrenergic inhibitory junctional (synaptic) potentials (IJP) in the guinea pig GIT SM cells. At the same time, L-NAME did not affect the vasoactive intestinal polypeptide (VIP)- and NP-evoked hyperpolarization in SM cells of the colon. The NP-induced hyperpolarization (0.1 mM) was accompained by a decrease in the SM cell membrane resistance. Application of NP to isolated SM cells activated a small outward current and increased the frequency of spontaneous transient calcium-dependent outward currents. NP increased the Ca-dependent potassium current evoked in SM cells by step depolarization, but did not affect the potassium currents of delayed rectification. Our results suggest that NO is involved in generation of nonadrenergic IJP in SM cells of the guinea pig GIT. The action of NP on SM cells is complex and results in hyperpolarization and relaxation (partially through the activation of Ca-dependent potassium channels in SM cell membrane).  相似文献   

6.
L-Arginine crosses the cell membrane primarily through the system y(+) transporter. The aim of this study was to investigate the role of L-arginine transport in nitric oxide (NO) production in aortas of rats with heart failure induced by myocardial infarction. Tumor necrosis factor-alpha levels in aortas of rats with heart failure were six times higher than in sham rats (P < 0.01). L-Arginine uptake was increased in aortas of rats with heart failure compared with sham rats (P < 0.01). Cationic amino acid transporter-2B and inducible (i) nitric oxide synthase (NOS) expression were increased in aortas of rats with heart failure compared with sham rats (P < 0.05). Aortic strips from rats with heart failure treated with L-arginine but not D-arginine increased NO production (P < 0.05). The effect of L-arginine on NO production was blocked by L-lysine, a basic amino acid that shares the same system y(+) transporter with L-arginine, and by the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Treatment with L-lysine and L-NAME in vivo decreased plasma nitrate and nitrite levels in rats with heart failure (P < 0.05). Our data demonstrate that NO production is dependent on iNOS activity and L-arginine uptake and suggest that L-arginine transport plays an important role in enhanced NO production in heart failure.  相似文献   

7.
Nitric oxide (NO) in the nucleus tractus solitarii (NTS) plays an important role in regulating sympathetic nerve activity. The aims of this study were to determine whether the activation of N-methyl-D-aspartate (NMDA) receptors in the NTS facilitates the release of L-glutamate (Glu) via NO production, and, if so, to determine whether this mechanism is involved in the depressor and bradycardic responses evoked by NMDA. We measured the production of NO in the NTS as NO2- and NO3- (NO(x)) or Glu levels by in vivo microdialysis before, during, and after infusion of NMDA in anesthetized rats. We also examined effects of N(omega)-nitro-L-arginine methyl ester (L-NAME) on the changes in these levels. NMDA elicited depressor and bradycardic responses and increased the levels of NO(x) and Glu. L-NAME abolished the increases in the levels of NO(x) and Glu and attenuated cardiovascular responses evoked by NMDA. These results suggest that NMDA receptor activation in the NTS induces Glu release through NO synthesis and that Glu released via NO enhances depressor and bradycardic responses.  相似文献   

8.
The effect of age on pain response to paw pressure and intraplantar formalin injection in rats is elucidated. Pain responses evoked by mechanical pressure on hind paw and intraplantar injection of formaldehyde (5%) into the hind paw were evaluated in groups of adult, young and aged male Sprague Dawley rats, after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of L-arginine or NG-nitro-L-arginine methyl ester (L-NAME). Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase staining was done in the two groups. The results show that pain response was reduced in the aged rats and enhanced pain response to paw pressure in aged rats only. L-arginine (i.c.v.) had no effect on pain response to paw pressure in the two groups but enhanced biphasic pain response to formalin. L-NAME (i.p. and i.c.v.) suppressed pain response to paw pressure in the two groups. L-NAME (i.c.v.) suppressed pain response to formalin during the acute phase and enhanced it during the late phase. NADPH-diaphorase activity was significantly greater in young rats. In conclusion, pain response is blunted in the aged rats. NO might be involved in mechanical nociception in aged rats and in formalin-induced nociception in both groups. NO blockade has an antinociceptive effect on pain response. Central NO has dual role in pain response evoked by formalin.  相似文献   

9.
《Life sciences》1997,60(24):PL353-PL357
Nitric oxide (NO) has been cited to play an important regulatory role in airway function. Moreover, the NO synthase expression in models of inflammation is documented. The aim of this study was to investigate, in vitro, the NO modulation of cholinergic responses in sham-sensitized and ovalbumin-sensitized guinea pig trachea by using L-arginine (L-ARG), a precursor of NO synthesis, and L-Ng-nitro-arginine-methyl-ester (L-NAME), an inhibitor of NO synthase.Our results showed that NO's ability to modulate cholinergic responses in oval-buminsensitized guinea pig trachea is lost. Indeed L-ARG and L-NAME modify acetylcholine sensitivity in sham-sensitized guinea pig but not in ovalbumin-sensitized guinea pig.  相似文献   

10.
The effect of blocking brain nitric oxide (NO) synthesis on body temperature regulation was tested in conscious rats. NO synthase was inhibited by administration of equivalent doses of NG-nitro-L-arginine methyl ester (L-NAME) or NG-monomethyl L-arginine monoacetate (L-NMMA) into a lateral cerebral ventricle (ICV) and core temperature was monitored. An ICV injection of 300 μg L-NAME increased colonic temperature in rats (n=8) by 1.9±0.1 °C (P<0.001). The increase in temperature in response to blockade of NO synthesis was significant by 1 h after injection and sustained for more than 3 h. The hyperthermic response to central NO blockade (using L-NMMA) was found to be dose-dependent between 2.8 to 282 μg. Intravenous administration of L-NAME at the highest dose used in the study (300 μg) had no effect on temperature, indicating that the mechanism was mediated by the brain. Pre-treatment with indomethacin (300 μg) blocked hyperthermic responses to ICV L-NAME (300 μg) administration. We conclude that, blockade of nitric oxide induces a cyclooxygenase-dependent hyperthermia in conscious rats that is mediated by the brain.  相似文献   

11.
This study analyzed the effects of L-arginine and non-specific nitric oxide (NO) synthase blocker (L-NAME) on structural and metabolic changes in experimental ischemia/reperfusion injury in the rat. Histopathological evaluation of rat tissues after reperfusion was also performed. The animals were divided into four groups: [1] nonischemic control, [2] ischemia 4 hrs/repefusion 30, 60, 120 min, [3] ischemia/reperfusion after L-arginine administration, [4] ischemia/reperfusion, after L-arginine, and L-NAME. L-arginine (500 mg/kg) and L-NAME (75 micromol/rat/day) were administrated orally for 5 days before experiment. Concentrations of free radicals, CD-62P, CD-54 and malonyl dialdehyde (MDA) in tissues, and MDA and NO levels in sera were determined. Free radical levels significantly increased in reperfused skeletal muscle, small and large intestines. In large bowel, reperfusion increased MDA levels and evoked a rise of endotoxin level while NO levels decreased. Histological studies showed an increase in the number of lymphocytes in both intestines. Administration of L-arginine reduced leukocyte adherence associated with ischemia-repefusion injury, decreased the levels of free radicals and MDA in the examined tissues, and inhibited the release of endotoxins into blood. L-arginine-treated animals showed higher serum NO levels and reduced leukocyte bowel infiltration. Concomitant L-NAME administration reduced serum NO and tissue free radical [corrected] levels, but did not affect intestinal leukocyte infiltration. L-arginine could ameliorate intestinal ischemia/reperfusion injury and constitute a possible protective mechanism by decreasing neutrophil-endothelial interactions, stimulating free radical scavenging and reducing lipid peroxidation.  相似文献   

12.
Electrical stimulation of sensory neurons that innervate receptors on the tailfan of crayfish evokes a reflex response of motor neurons that produce movements of the blades of the tailfan, the uropods. We analyzed the modulatory effects of nitric oxide (NO) on the spike frequency of the reflex response. Bath application of L-arginine and SNAP, which elevate endogenous and exogenous NO levels, increased the frequency of the evoked response, whereas the application of L-NAME and PTIO, which reduce NO levels, decreased the frequency of the response. To determine through what pathway and target NO exerted these effects we bath applied ODQ, an inhibitor of soluble guanylyl cyclase (sGC), which decreased the frequency of response, and 8-br-cGMP, which increased the spike frequency of response. To provide further evidence that NO acts via sGC, we elevated NO levels with L-arginine while simultaneously inhibiting sGC with ODQ. This application reduced the response to control levels, indicating that NO in the terminal ganglion of crayfish acts via sGC to modulate cGMP levels, which in turn regulate the responses of the uropod motor neurons.  相似文献   

13.
在麻醉大鼠观察了向延髓腹外侧区微量注射NO合成酶抑制剂N-硝基左旋精氨酸(LNNA)和硝普钢(SNP)对血压、心率和肾交感神经活动的影响,旨在探讨中枢左旋精氨酸-NO通路在动脉血压调节中的作用及其机制。实验结果如下:(1)向延髓腹外侧头端区(RVLM)注射L-NNA后,平均动脉压(MAP)升高,肾交感神经活动(RSNA)增强;心率(HR)减慢,但无统计学意义。MAP和RSNA的变化持续30min以上;此效应可被预先静注左旋精氨酸所逆转。(2)向RVLM微量注射SNP,MAP降低,RSNA减弱;但HR的变化无统计学意义。(3)向延髓腹外侧尾端区(CVLM)注射L-NNA,MAP降低,HR减慢,RSNA减弱。(4)向CVLM微量注射SNP,MAP升高,RSNA增强,而心率无明显变化。以上结果表明,中枢左旋精氨酸-NO通路对延髓腹外侧部的神经元活动有调变作用。  相似文献   

14.
Nitric oxide (NO) controls blood pressure and plays a role in the water and sodium handling by the kidneys. Inhibition of NO synthesis with competitive L-arginine analogues leads to increased renal vascular resistance and raised systemic and glomerular blood pressure. The effects of chronic NO-synthesis inhibition by N(G)-nitro L-arginine methyl-esther (L-NAME) in the disposal of an acute NaCl load are studied on fourteen male Munich-Wistar rats. Eight of which were given L-NAME (100 mg/L) in the drinking water for 21 days. Six control rats differed only in not receiving L-NAME. As expected, significant hypertension and a marked renal vasoconstriction were accompanied by a decline in renal plasma flow, without changes in glomerular filtration rate, with filtration fraction thus being increased in the NO-blocked rats. In the basal state there was no significant reduction of sodium urinary excretion in the L-NAME treated rats. Both groups of rats elicited an increase in urinary sodium excretion after the NaCl load which was initially more evident and longer in the L-NAME treated group. The ratio of Na+ excreted to Na+ infused was similar between the groups. This observation suggests that in this model of chronic inhibited NO rats, the disposal of an acute sodium load is reached. The existence of a delayed mechanism in renal excretion of Na+ by the chronic NO-blocked rats could be suggested.  相似文献   

15.
Activity-dependent refinement of synaptic connections occurs throughout the developing nervous system, including the visual system. Retinal ganglion cells (RGCs) overproduce synapses then refine them in an activity-dependent manner that segregates RGC connections into multicellular patterns, such as eye-specific regions and retinotopic maps. Ferrets additionally segregate ON and OFF retinogeniculate pathways in an activity-dependent manner. It was unknown whether differences in ON versus OFF intrinsic and spontaneous activity occur in postnatal mouse. The work reported here measured the intrinsic properties and spontaneous activity of morphologically identified postnatal mouse RGCs, and tested the hypothesis that mouse ON and OFF RGCs develop differences in spontaneous activity. We found developmental changes in resting potential, action potential threshold, depolarization to threshold, action potential width, action potential patterns, and maximal firing rates. These results are consistent with the maturation of the intrinsic properties of RGCs extending through the first three postnatal weeks. However, there were no differences among mouse ON, OFF, and multistratified RGCs in intrinsic excitability, spontaneous synaptic drive or spontaneous action potential patterns. The absence of differences between ON and OFF activity patterns is unlike the differences that arise in ferrets. In contrast to the ferret, the ON and OFF target neurons in the mouse are organized in a random pattern, not layers. This supports the hypothesis that the absence of systematic differences in activity results in the nonlayered distribution of retinogeniculate connections.  相似文献   

16.
In vitro studies have shown that acetylcholine-induced vasorelaxation is mediated by endothelium-derived relaxing factor/nitric oxide (EDRF/NO). EDRF/NO is synthesized from L-arginine by an enzymatic pathway that is inhibited by L-NG-methylarginine. To assess whether EDRF/NO also mediates the vasodilating action of acetylcholine in vivo, we have investigated the effect of L-arginine and L-NG-methylarginine on the hypotensive response to acetylcholine in the anesthetized guinea pig. L-arginine prolonged the duration of the depressor response to acetylcholine and L-NG-methylarginine decreased it. However, neither L-arginine nor L-NG-methylarginine modified the magnitude of acetylcholine's hypotensive effect unless the blood pressure was previously elevated by infusion with norepinephrine. Thus, de novo synthesis of nitric oxide from L-arginine contributes importantly, but not exclusively, to acetylcholine's hypotensive effect in the guinea pig. Furthermore, the concentration of circulating L-arginine may influence the duration and magnitude of acetylcholine-induced depressor responses under normotensive and hypertensive conditions.  相似文献   

17.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

18.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

19.
NO对大鼠睡眠-觉醒的调节   总被引:10,自引:0,他引:10  
目的和方法:通过对大鼠侧脑室微量注射NOS抑制剂L-NAME及NO的前体L-精氨酸(L-Arg)观察两种物质对大鼠睡眠-觉醒的影响。结果:注射1mg L-NAME(5μL)后4h觉醒(W)明显增加,尤以注射后第1 ̄2h显著;4h慢波睡眠(SWS)明显减少,该效应同样以注射后第1 ̄2h显著;异相睡眠(PS)无明显变化。小剂量L-NAME(0.2mg,5μl)对大鼠的W、SWS、PS无明显影响;同样方  相似文献   

20.
In acute experiments on cats we studied the modulating influence of an NO donor, nitroglycerin (NG), and a blocker of NO synthase nitro-L-arginine, methyl esther (L-NAME), on the neuronal responses in the anterior hypothalamus evoked by stimulation of evolutionary heterogeneous cortical zones. Intracerebroventricular injections of NG and L-NAME relatively rarely resulted in fundamental changes in the types of cortically evoked responses (8.8%; 65 cases among 736 testings). Yet, 72% of the L-NAME injections evoked significant increases in the frequency of the neuronal background activity, while 64% of NG injections resulted in suppression of the background activit. Possible mechanisms of modifications of the synaptic efficiency in cortico-hypothalamic projections determined by shifts in the NO concentration are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号